Based on the analysis of a certain class of linear operators on a Banach space, we provide a closed form expression for the solutions of certain linear partial differential equations with non-autonomous input, time delays and stochastic terms, which takes the form of an infinite series expansion.
En se basant sur lʼanalyse dʼune certaine classe dʼopérateurs linéraires dans des espaces de Banach, nous établissons une expression analytique pour la solution de certaines équations aux dérivées partielles linéaires avec des entrées non-autonomes, des délais et des termes stochastique, sous la forme dʼun développement en série.
Accepted:
Published online:
Mathieu Galtier 1; Jonathan Touboul 2
@article{CRMATH_2012__350_3-4_167_0, author = {Mathieu Galtier and Jonathan Touboul}, title = {On an explicit representation of the solution of linear stochastic partial differential equations with delays}, journal = {Comptes Rendus. Math\'ematique}, pages = {167--172}, publisher = {Elsevier}, volume = {350}, number = {3-4}, year = {2012}, doi = {10.1016/j.crma.2012.01.004}, language = {en}, }
TY - JOUR AU - Mathieu Galtier AU - Jonathan Touboul TI - On an explicit representation of the solution of linear stochastic partial differential equations with delays JO - Comptes Rendus. Mathématique PY - 2012 SP - 167 EP - 172 VL - 350 IS - 3-4 PB - Elsevier DO - 10.1016/j.crma.2012.01.004 LA - en ID - CRMATH_2012__350_3-4_167_0 ER -
%0 Journal Article %A Mathieu Galtier %A Jonathan Touboul %T On an explicit representation of the solution of linear stochastic partial differential equations with delays %J Comptes Rendus. Mathématique %D 2012 %P 167-172 %V 350 %N 3-4 %I Elsevier %R 10.1016/j.crma.2012.01.004 %G en %F CRMATH_2012__350_3-4_167_0
Mathieu Galtier; Jonathan Touboul. On an explicit representation of the solution of linear stochastic partial differential equations with delays. Comptes Rendus. Mathématique, Volume 350 (2012) no. 3-4, pp. 167-172. doi : 10.1016/j.crma.2012.01.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.01.004/
[1] Kronecker products and matrix calculus in system theory, IEEE Trans. Circuits Syst., Volume CAS-25 (1978) no. 9
[2] M. Galtier, G. Wainrib, Multiscale analysis of slow–fast neuronal learning models with noise, submitted for publication.
[3] Introduction to Functional Differential Equations, Springer, 1993
[4] Stochastic Differential Equations and Applications, Horwood Publishing, 2008
[5] Stochastic Equations in Infinite Dimensions, Cambridge Univ. Press, 1992
Cited by Sources:
Comments - Policy