[Une relation entre nombre de points entiers, volumes des faces et degré du discriminant des polytopes entiers non singuliers]
Nous donnons une formule pour le degré du discriminant dʼune variété torique projective non singulière associée à un polytope entier P, en terme du nombre de points entiers des intérieurs de dilatations de faces de dimension supérieure ou égale à .
We present a formula for the degree of the discriminant of a smooth projective toric variety associated to a lattice polytope P, in terms of the number of integral points in the interior of dilates of faces of dimension greater or equal than .
Accepté le :
Publié le :
Alicia Dickenstein 1 ; Benjamin Nill 2 ; Michèle Vergne 3
@article{CRMATH_2012__350_5-6_229_0, author = {Alicia Dickenstein and Benjamin Nill and Mich\`ele Vergne}, title = {A relation between number of integral points, volumes of faces and degree of the discriminant of smooth lattice polytopes}, journal = {Comptes Rendus. Math\'ematique}, pages = {229--233}, publisher = {Elsevier}, volume = {350}, number = {5-6}, year = {2012}, doi = {10.1016/j.crma.2012.02.001}, language = {en}, }
TY - JOUR AU - Alicia Dickenstein AU - Benjamin Nill AU - Michèle Vergne TI - A relation between number of integral points, volumes of faces and degree of the discriminant of smooth lattice polytopes JO - Comptes Rendus. Mathématique PY - 2012 SP - 229 EP - 233 VL - 350 IS - 5-6 PB - Elsevier DO - 10.1016/j.crma.2012.02.001 LA - en ID - CRMATH_2012__350_5-6_229_0 ER -
%0 Journal Article %A Alicia Dickenstein %A Benjamin Nill %A Michèle Vergne %T A relation between number of integral points, volumes of faces and degree of the discriminant of smooth lattice polytopes %J Comptes Rendus. Mathématique %D 2012 %P 229-233 %V 350 %N 5-6 %I Elsevier %R 10.1016/j.crma.2012.02.001 %G en %F CRMATH_2012__350_5-6_229_0
Alicia Dickenstein; Benjamin Nill; Michèle Vergne. A relation between number of integral points, volumes of faces and degree of the discriminant of smooth lattice polytopes. Comptes Rendus. Mathématique, Volume 350 (2012) no. 5-6, pp. 229-233. doi : 10.1016/j.crma.2012.02.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.02.001/
[1] Multiples of lattice polytopes without interior lattice points, Mosc. Math. J., Volume 7 (2007), pp. 195-207
[2] Computing the Continuous Discretely: Integer Point Enumeration in Polyhedra, Undergraduate Texts in Mathematics, Springer-Verlag, 2007
[3] Points entiers dans les polyèdres convexes, Ann. Sci. Ecole Norm. Sup., Volume 21 (1988), pp. 653-663
[4] Projective duality of toric manifolds and defect polytopes, Proc. London Math. Soc., Volume 93 (2006), pp. 85-104
[5] A simple combinatorial criterion for projective toric manifolds with dual defect, Math. Res. Lett., Volume 17 (2010) no. 3, pp. 435-448
[6] Polynômes arithmétiques et méthode des polyèdres en combinatoire, International Series of Numerical Mathematics, vol. 35, Birkhäuser Verlag, 1977
[7] Discriminants, Resultants and Multidimensional Determinants, Birkhäuser, Boston, 1994
[8] Cayley decompositions of lattice polytopes and upper bounds for -polynomials, J. Reine Angew. Math., Volume 637 (2009), pp. 207-216
[9] The boundary volume of a lattice polytope, 2010 (preprint) | arXiv
[10] Non-commutative symmetric functions and an amazing matrix, 2011 (preprint) | arXiv
[11] A monotonicity property of h-vectors and -vectors, Eur. J. Comb., Volume 14 (1993), pp. 251-258
[12] Lectures on Polytopes, Graduate Texts in Mathematics, vol. 152, Springer-Verlag, 1995
Cité par Sources :
Commentaires - Politique