Comptes Rendus
Combinatorics
A relation between number of integral points, volumes of faces and degree of the discriminant of smooth lattice polytopes
Comptes Rendus. Mathématique, Volume 350 (2012) no. 5-6, pp. 229-233.

We present a formula for the degree of the discriminant of a smooth projective toric variety associated to a lattice polytope P, in terms of the number of integral points in the interior of dilates of faces of dimension greater or equal than dimP2.

Nous donnons une formule pour le degré du discriminant dʼune variété torique projective non singulière associée à un polytope entier P, en terme du nombre de points entiers des intérieurs de dilatations de faces de dimension supérieure ou égale à dimP2.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2012.02.001

Alicia Dickenstein 1; Benjamin Nill 2; Michèle Vergne 3

1 Departamento de Matemática, FCEN, Universidad de Buenos Aires and IMAS, CONICET, Ciudad Universitaria, Pab I, (C1428EGA) Buenos Aires, Argentina
2 Case Western Reserve University, Department of Mathematics, 10900, Euclid Avenue, Cleveland, OH 44106, USA
3 Institut de mathématiques de Jussieu, 175, rue du Chevaleret, 75013 Paris, France
@article{CRMATH_2012__350_5-6_229_0,
     author = {Alicia Dickenstein and Benjamin Nill and Mich\`ele Vergne},
     title = {A relation between number of integral points, volumes of faces and degree of the discriminant of smooth lattice polytopes},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {229--233},
     publisher = {Elsevier},
     volume = {350},
     number = {5-6},
     year = {2012},
     doi = {10.1016/j.crma.2012.02.001},
     language = {en},
}
TY  - JOUR
AU  - Alicia Dickenstein
AU  - Benjamin Nill
AU  - Michèle Vergne
TI  - A relation between number of integral points, volumes of faces and degree of the discriminant of smooth lattice polytopes
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 229
EP  - 233
VL  - 350
IS  - 5-6
PB  - Elsevier
DO  - 10.1016/j.crma.2012.02.001
LA  - en
ID  - CRMATH_2012__350_5-6_229_0
ER  - 
%0 Journal Article
%A Alicia Dickenstein
%A Benjamin Nill
%A Michèle Vergne
%T A relation between number of integral points, volumes of faces and degree of the discriminant of smooth lattice polytopes
%J Comptes Rendus. Mathématique
%D 2012
%P 229-233
%V 350
%N 5-6
%I Elsevier
%R 10.1016/j.crma.2012.02.001
%G en
%F CRMATH_2012__350_5-6_229_0
Alicia Dickenstein; Benjamin Nill; Michèle Vergne. A relation between number of integral points, volumes of faces and degree of the discriminant of smooth lattice polytopes. Comptes Rendus. Mathématique, Volume 350 (2012) no. 5-6, pp. 229-233. doi : 10.1016/j.crma.2012.02.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.02.001/

[1] V.V. Batyrev; B. Nill Multiples of lattice polytopes without interior lattice points, Mosc. Math. J., Volume 7 (2007), pp. 195-207

[2] M. Beck; S. Robins Computing the Continuous Discretely: Integer Point Enumeration in Polyhedra, Undergraduate Texts in Mathematics, Springer-Verlag, 2007

[3] M. Brion Points entiers dans les polyèdres convexes, Ann. Sci. Ecole Norm. Sup., Volume 21 (1988), pp. 653-663

[4] S. Di Rocco Projective duality of toric manifolds and defect polytopes, Proc. London Math. Soc., Volume 93 (2006), pp. 85-104

[5] A. Dickenstein; B. Nill A simple combinatorial criterion for projective toric manifolds with dual defect, Math. Res. Lett., Volume 17 (2010) no. 3, pp. 435-448

[6] E. Ehrhart Polynômes arithmétiques et méthode des polyèdres en combinatoire, International Series of Numerical Mathematics, vol. 35, Birkhäuser Verlag, 1977

[7] I. Gelʼfand; M. Kapranov; A. Zelevinsky Discriminants, Resultants and Multidimensional Determinants, Birkhäuser, Boston, 1994

[8] C. Haase; B. Nill; S. Payne Cayley decompositions of lattice polytopes and upper bounds for h-polynomials, J. Reine Angew. Math., Volume 637 (2009), pp. 207-216

[9] G. Hegedüs; A.M. Kasprzyk The boundary volume of a lattice polytope, 2010 (preprint) | arXiv

[10] J.C. Novelli; J.Y. Thibon Non-commutative symmetric functions and an amazing matrix, 2011 (preprint) | arXiv

[11] R.P. Stanley A monotonicity property of h-vectors and h-vectors, Eur. J. Comb., Volume 14 (1993), pp. 251-258

[12] G. Ziegler Lectures on Polytopes, Graduate Texts in Mathematics, vol. 152, Springer-Verlag, 1995

Cited by Sources:

Comments - Policy