We prove that if X is a projective algebraic space, Y is a normal compact complex space and is a surjective morphism with equidimensional fibers then Y is also projective algebraic.
On démontre le résultat suivant : si X est un espace algébrique projectif, Y est un espace complexe compact normal et une application holomorphe surjective avec fibres équidimensionnelles alors Y est aussi un espace algébrique projectif.
Accepted:
Published online:
Mihnea Colţoiu 1; Natalia Gaşiţoi 2; Cezar Joiţa 1
@article{CRMATH_2012__350_5-6_239_0, author = {Mihnea Col\c{t}oiu and Natalia Ga\c{s}i\c{t}oi and Cezar Joi\c{t}a}, title = {On the image of an algebraic projective space}, journal = {Comptes Rendus. Math\'ematique}, pages = {239--241}, publisher = {Elsevier}, volume = {350}, number = {5-6}, year = {2012}, doi = {10.1016/j.crma.2012.02.002}, language = {en}, }
Mihnea Colţoiu; Natalia Gaşiţoi; Cezar Joiţa. On the image of an algebraic projective space. Comptes Rendus. Mathématique, Volume 350 (2012) no. 5-6, pp. 239-241. doi : 10.1016/j.crma.2012.02.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.02.002/
[1] Modifications Analytiques, Lecture Notes in Mathematics, vol. 943, Springer-Verlag, Berlin–New York, 1982
[2] Projektive Einbettung komplexer Mannigfaltigkeiten, Math. Ann., Volume 234 (1978) no. 1, pp. 45-50
[3] Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann., Volume 146 (1962), pp. 331-368
[4] Algebraic Geometry, Graduate Texts in Mathematics, vol. 52, Springer-Verlag, New York–Heidelberg, 1977
[5] Smoothing of algebraic cycles of small dimensions, Amer. J. Math., Volume 90 (1968), pp. 1-54
[6] Über Bilder projektiv-algebraischer Räume, J. Reine Angew. Math., Volume 324 (1981), pp. 136-140
[7] On n-dimensional compact complex manifolds having n algebraically independent meromorphic functions, Amer. Math. Soc. Transl., Volume 63 (1967), pp. 51-177
[8] Über holomorphe Abbildungen projektiv-algebraischer Mannigfaltigkeiten auf komplexe Räume, Math. Ann., Volume 142 (1961), pp. 453-486
[9] Basic Algebraic Geometry, Die Grundlehren der Mathematischen Wissenschaften, Band 213, Springer-Verlag, New York–Heidelberg, 1974
[10] Stabilité de la classe des variétés kählériennes par certains morphismes propres, Invent. Math., Volume 77 (1984) no. 1, pp. 117-127
[11] Kähler spaces and proper open morphisms, Math. Ann., Volume 283 (1989) no. 1, pp. 13-52
[12] Complex Analytic Varieties, Addison–Wesley Publishing Co., Reading, MA, 1972
Cited by Sources:
☆ The first and third named authors were supported by CNCS grant PN-II-ID-PCE-2011-3-0269.
Comments - Policy