Comptes Rendus
Partial Differential Equations
A kinetic eikonal equation
[Une équation eikonale cinétique]
Comptes Rendus. Mathématique, Volume 350 (2012) no. 5-6, pp. 243-248.

Nous analysons une équation cinétique linéaire de transport avec un opérateur de relaxation BGK. Nous étudions la limite hyperbolique de grande échelle (t,x)(t/ε,x/ε). Nous obtenons à la limite une nouvelle équation de Hamilton–Jacobi, qui est lʼanalogue de lʼéquation eikonale classique obtenue à partir de lʼéquation de la chaleur avec petite diffusion. Il est alors intéressant de constater que la limite hydrodynamique ne commute pas avec lʼasymptotique des grandes déviations. Nous démontrons le caractère bien posé de lʼéquation vérifiée par la phase, ainsi que la convergence vers une solution de viscosité de lʼéquation de Hamilton–Jacobi. Ceci est un travail préliminaire en vue dʼanalyser la propagation de fronts de réaction pour des équations cinétiques.

We analyse the linear kinetic transport equation with a BGK relaxation operator. We study the large scale hyperbolic limit (t,x)(t/ε,x/ε). We derive a new type of limiting Hamilton–Jacobi equation, which is analogous to the classical eikonal equation derived from the heat equation with small diffusivity. Interestingly, the hydrodynamic limit and the large deviation approach do not commute. We prove well-posedness of the phase problem and convergence towards the viscosity solution of the Hamilton–Jacobi equation. This is a preliminary work before analyzing the propagation of reaction fronts in kinetic equations.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2012.03.009

Emeric Bouin 1 ; Vincent Calvez 1

1 UMR CNRS 5669 ‘UMPA’ and INRIA project ‘NUMED’, École normale supérieure de Lyon, 46, allée dʼItalie, 69364 Lyon cedex 07, France
@article{CRMATH_2012__350_5-6_243_0,
     author = {Emeric Bouin and Vincent Calvez},
     title = {A kinetic eikonal equation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {243--248},
     publisher = {Elsevier},
     volume = {350},
     number = {5-6},
     year = {2012},
     doi = {10.1016/j.crma.2012.03.009},
     language = {en},
}
TY  - JOUR
AU  - Emeric Bouin
AU  - Vincent Calvez
TI  - A kinetic eikonal equation
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 243
EP  - 248
VL  - 350
IS  - 5-6
PB  - Elsevier
DO  - 10.1016/j.crma.2012.03.009
LA  - en
ID  - CRMATH_2012__350_5-6_243_0
ER  - 
%0 Journal Article
%A Emeric Bouin
%A Vincent Calvez
%T A kinetic eikonal equation
%J Comptes Rendus. Mathématique
%D 2012
%P 243-248
%V 350
%N 5-6
%I Elsevier
%R 10.1016/j.crma.2012.03.009
%G en
%F CRMATH_2012__350_5-6_243_0
Emeric Bouin; Vincent Calvez. A kinetic eikonal equation. Comptes Rendus. Mathématique, Volume 350 (2012) no. 5-6, pp. 243-248. doi : 10.1016/j.crma.2012.03.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.03.009/

[1] G. Barles; L.C. Evans; P.E. Souganidis Wavefront propagation for reaction–diffusion systems of PDE, Duke Math. J., Volume 61 (1990) no. 3, pp. 835-858

[2] G. Barles; S. Mirrahimi; B. Perthame Concentration in Lotka–Volterra parabolic or integral equations: a general convergence result, Methods Appl. Anal., Volume 16 (2009), pp. 321-340

[3] E. Bouin, V. Calvez, G. Nadin, Hyperbolic traveling waves driven by growth, preprint, 2011.

[4] M.G. Crandall; L.C. Evans; P.L. Lions Some properties of viscosity solutions of Hamilton–Jacobi equations, Trans. Amer. Math. Soc., Volume 282 (1984), pp. 487-502

[5] C. Cuesta, S. Hittmeir, C. Schmeiser, Traveling waves of a kinetic transport model for the KPP–Fisher equation, preprint, 2010.

[6] L.C. Evans The perturbed test function method for viscosity solutions of nonlinear PDE, Proc. Roy. Soc. Edinburgh Sect. A, Volume 111 (1989), pp. 359-375

[7] L.C. Evans A survey of entropy methods for partial differential equations, Bull. Amer. Math. Soc., Volume 41 (2004), pp. 409-438

[8] L.C. Evans; H. Ishii A PDE approach to some asymptotic problems concerning random differential equations with small noise intensities, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 2 (1985), pp. 1-20

[9] L.C. Evans; P.E. Souganidis A PDE approach to geometric optics for certain semilinear parabolic equations, Indiana Univ. Math. J., Volume 38 (1989), pp. 141-172

[10] S. Fedotov Wave front for a reaction–diffusion system and relativistic Hamilton–Jacobi dynamics, Phys. Rev. E, Volume 59 (1999) no. 3, pp. 5040-5044

[11] W.H. Fleming; P.E. Souganidis PDE-viscosity solution approach to some problems of large deviations, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Sér, Volume 13 (1986) no. 2, pp. 171-192

[12] M.I. Freidlin Geometric optics approach to reaction–diffusion equations, SIAM J. Appl. Math., Volume 46 (1986), pp. 222-232

[13] M.I. Freidlin; A.D. Wentzell Random Perturbations of Dynamical Systems, Grundlehren Math. Wiss., vol. 260, Springer-Verlag, New York, 1998

  • Nadia Loy; Benoît Perthame A Hamilton–Jacobi approach to nonlocal kinetic equations, Nonlinearity, Volume 37 (2024) no. 10, p. 105019 | DOI:10.1088/1361-6544/ad75dd
  • Emeric Bouin; Vincent Calvez; Emmanuel Grenier; Grégoire Nadin Large‐scale asymptotics of velocity‐jump processes and nonlocal Hamilton–Jacobi equations, Journal of the London Mathematical Society, Volume 108 (2023) no. 1, p. 141 | DOI:10.1112/jlms.12742
  • Nils Caillerie Large deviations of a forced velocity-jump process with a Hamilton–Jacobi approach, Annales de l'Institut Fourier, Volume 71 (2022) no. 4, p. 1733 | DOI:10.5802/aif.3433
  • Hamza Ennaji; Noureddine Igbida; Van Thanh Nguyen Quasi-Convex Hamilton–Jacobi Equations via Finsler p-Laplace–Type Operators, SIAM Journal on Mathematical Analysis, Volume 54 (2022) no. 4, p. 5041 | DOI:10.1137/21m143306x
  • Vincent Calvez; Pierre Gabriel; Álvaro Mateos González Limiting Hamilton–Jacobi equation for the large scale asymptotics of a subdiffusion jump-renewal equation, Asymptotic Analysis, Volume 115 (2019) no. 1-2, p. 63 | DOI:10.3233/asy-191528
  • EMERIC BOUIN; NILS CAILLERIE Spreading in kinetic reaction–transport equations in higher velocity dimensions, European Journal of Applied Mathematics, Volume 30 (2019) no. 2, p. 219 | DOI:10.1017/s0956792518000037
  • Hailiang Liu; Linrui Qian Alternating evolution methods for static Hamilton–Jacobi equations, Journal of Computational and Applied Mathematics, Volume 351 (2019), p. 270 | DOI:10.1016/j.cam.2018.10.013
  • Hélène Hivert A first-order asymptotic preserving scheme for front propagation in a one-dimensional kinetic reaction–transport equation, Journal of Computational Physics, Volume 367 (2018), p. 253 | DOI:10.1016/j.jcp.2018.04.036
  • Songting Luo; Nicholas Payne Properties-preserving high order numerical methods for a kinetic eikonal equation, Journal of Computational Physics, Volume 331 (2017), p. 73 | DOI:10.1016/j.jcp.2016.11.040
  • Songting Luo; Nicholas Payne An asymptotic method based on a Hopf–Cole transformation for a kinetic BGK equation in the hyperbolic limit, Journal of Computational Physics, Volume 341 (2017), p. 295 | DOI:10.1016/j.jcp.2017.04.028
  • Christopher Henderson; Panagiotis E. Souganidis The reactive-telegraph equation and a related kinetic model, Nonlinear Differential Equations and Applications NoDEA, Volume 24 (2017) no. 6 | DOI:10.1007/s00030-017-0488-0
  • Emeric Bouin; Vincent Calvez; Grégoire Nadin Propagation in a Kinetic Reaction-Transport Equation: Travelling Waves And Accelerating Fronts, Archive for Rational Mechanics and Analysis, Volume 217 (2015) no. 2, p. 571 | DOI:10.1007/s00205-014-0837-7
  • Emeric Bouin A Hamilton-Jacobi approach for front propagation in kinetic equations, Kinetic and Related Models, Volume 8 (2015) no. 2, p. 255 | DOI:10.3934/krm.2015.8.255
  • Emeric Bouin; Vincent Calvez Travelling waves for the cane toads equation with bounded traits, Nonlinearity, Volume 27 (2014) no. 9, p. 2233 | DOI:10.1088/0951-7715/27/9/2233

Cité par 14 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: