[Une équation eikonale cinétique]
Nous analysons une équation cinétique linéaire de transport avec un opérateur de relaxation BGK. Nous étudions la limite hyperbolique de grande échelle
We analyse the linear kinetic transport equation with a BGK relaxation operator. We study the large scale hyperbolic limit
Accepté le :
Publié le :
Emeric Bouin 1 ; Vincent Calvez 1
@article{CRMATH_2012__350_5-6_243_0, author = {Emeric Bouin and Vincent Calvez}, title = {A kinetic eikonal equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {243--248}, publisher = {Elsevier}, volume = {350}, number = {5-6}, year = {2012}, doi = {10.1016/j.crma.2012.03.009}, language = {en}, }
Emeric Bouin; Vincent Calvez. A kinetic eikonal equation. Comptes Rendus. Mathématique, Volume 350 (2012) no. 5-6, pp. 243-248. doi : 10.1016/j.crma.2012.03.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.03.009/
[1] Wavefront propagation for reaction–diffusion systems of PDE, Duke Math. J., Volume 61 (1990) no. 3, pp. 835-858
[2] Concentration in Lotka–Volterra parabolic or integral equations: a general convergence result, Methods Appl. Anal., Volume 16 (2009), pp. 321-340
[3] E. Bouin, V. Calvez, G. Nadin, Hyperbolic traveling waves driven by growth, preprint, 2011.
[4] Some properties of viscosity solutions of Hamilton–Jacobi equations, Trans. Amer. Math. Soc., Volume 282 (1984), pp. 487-502
[5] C. Cuesta, S. Hittmeir, C. Schmeiser, Traveling waves of a kinetic transport model for the KPP–Fisher equation, preprint, 2010.
[6] The perturbed test function method for viscosity solutions of nonlinear PDE, Proc. Roy. Soc. Edinburgh Sect. A, Volume 111 (1989), pp. 359-375
[7] A survey of entropy methods for partial differential equations, Bull. Amer. Math. Soc., Volume 41 (2004), pp. 409-438
[8] A PDE approach to some asymptotic problems concerning random differential equations with small noise intensities, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 2 (1985), pp. 1-20
[9] A PDE approach to geometric optics for certain semilinear parabolic equations, Indiana Univ. Math. J., Volume 38 (1989), pp. 141-172
[10] Wave front for a reaction–diffusion system and relativistic Hamilton–Jacobi dynamics, Phys. Rev. E, Volume 59 (1999) no. 3, pp. 5040-5044
[11] PDE-viscosity solution approach to some problems of large deviations, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Sér, Volume 13 (1986) no. 2, pp. 171-192
[12] Geometric optics approach to reaction–diffusion equations, SIAM J. Appl. Math., Volume 46 (1986), pp. 222-232
[13] Random Perturbations of Dynamical Systems, Grundlehren Math. Wiss., vol. 260, Springer-Verlag, New York, 1998
- A Hamilton–Jacobi approach to nonlocal kinetic equations, Nonlinearity, Volume 37 (2024) no. 10, p. 105019 | DOI:10.1088/1361-6544/ad75dd
- Large‐scale asymptotics of velocity‐jump processes and nonlocal Hamilton–Jacobi equations, Journal of the London Mathematical Society, Volume 108 (2023) no. 1, p. 141 | DOI:10.1112/jlms.12742
- Large deviations of a forced velocity-jump process with a Hamilton–Jacobi approach, Annales de l'Institut Fourier, Volume 71 (2022) no. 4, p. 1733 | DOI:10.5802/aif.3433
- Quasi-Convex Hamilton–Jacobi Equations via Finsler
-Laplace–Type Operators, SIAM Journal on Mathematical Analysis, Volume 54 (2022) no. 4, p. 5041 | DOI:10.1137/21m143306x - Limiting Hamilton–Jacobi equation for the large scale asymptotics of a subdiffusion jump-renewal equation, Asymptotic Analysis, Volume 115 (2019) no. 1-2, p. 63 | DOI:10.3233/asy-191528
- Spreading in kinetic reaction–transport equations in higher velocity dimensions, European Journal of Applied Mathematics, Volume 30 (2019) no. 2, p. 219 | DOI:10.1017/s0956792518000037
- Alternating evolution methods for static Hamilton–Jacobi equations, Journal of Computational and Applied Mathematics, Volume 351 (2019), p. 270 | DOI:10.1016/j.cam.2018.10.013
- A first-order asymptotic preserving scheme for front propagation in a one-dimensional kinetic reaction–transport equation, Journal of Computational Physics, Volume 367 (2018), p. 253 | DOI:10.1016/j.jcp.2018.04.036
- Properties-preserving high order numerical methods for a kinetic eikonal equation, Journal of Computational Physics, Volume 331 (2017), p. 73 | DOI:10.1016/j.jcp.2016.11.040
- An asymptotic method based on a Hopf–Cole transformation for a kinetic BGK equation in the hyperbolic limit, Journal of Computational Physics, Volume 341 (2017), p. 295 | DOI:10.1016/j.jcp.2017.04.028
- The reactive-telegraph equation and a related kinetic model, Nonlinear Differential Equations and Applications NoDEA, Volume 24 (2017) no. 6 | DOI:10.1007/s00030-017-0488-0
- Propagation in a Kinetic Reaction-Transport Equation: Travelling Waves And Accelerating Fronts, Archive for Rational Mechanics and Analysis, Volume 217 (2015) no. 2, p. 571 | DOI:10.1007/s00205-014-0837-7
- A Hamilton-Jacobi approach for front propagation in kinetic equations, Kinetic and Related Models, Volume 8 (2015) no. 2, p. 255 | DOI:10.3934/krm.2015.8.255
- Travelling waves for the cane toads equation with bounded traits, Nonlinearity, Volume 27 (2014) no. 9, p. 2233 | DOI:10.1088/0951-7715/27/9/2233
Cité par 14 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier