[Une équation eikonale cinétique]
Nous analysons une équation cinétique linéaire de transport avec un opérateur de relaxation BGK. Nous étudions la limite hyperbolique de grande échelle . Nous obtenons à la limite une nouvelle équation de Hamilton–Jacobi, qui est lʼanalogue de lʼéquation eikonale classique obtenue à partir de lʼéquation de la chaleur avec petite diffusion. Il est alors intéressant de constater que la limite hydrodynamique ne commute pas avec lʼasymptotique des grandes déviations. Nous démontrons le caractère bien posé de lʼéquation vérifiée par la phase, ainsi que la convergence vers une solution de viscosité de lʼéquation de Hamilton–Jacobi. Ceci est un travail préliminaire en vue dʼanalyser la propagation de fronts de réaction pour des équations cinétiques.
We analyse the linear kinetic transport equation with a BGK relaxation operator. We study the large scale hyperbolic limit . We derive a new type of limiting Hamilton–Jacobi equation, which is analogous to the classical eikonal equation derived from the heat equation with small diffusivity. Interestingly, the hydrodynamic limit and the large deviation approach do not commute. We prove well-posedness of the phase problem and convergence towards the viscosity solution of the Hamilton–Jacobi equation. This is a preliminary work before analyzing the propagation of reaction fronts in kinetic equations.
Accepté le :
Publié le :
Emeric Bouin 1 ; Vincent Calvez 1
@article{CRMATH_2012__350_5-6_243_0, author = {Emeric Bouin and Vincent Calvez}, title = {A kinetic eikonal equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {243--248}, publisher = {Elsevier}, volume = {350}, number = {5-6}, year = {2012}, doi = {10.1016/j.crma.2012.03.009}, language = {en}, }
Emeric Bouin; Vincent Calvez. A kinetic eikonal equation. Comptes Rendus. Mathématique, Volume 350 (2012) no. 5-6, pp. 243-248. doi : 10.1016/j.crma.2012.03.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.03.009/
[1] Wavefront propagation for reaction–diffusion systems of PDE, Duke Math. J., Volume 61 (1990) no. 3, pp. 835-858
[2] Concentration in Lotka–Volterra parabolic or integral equations: a general convergence result, Methods Appl. Anal., Volume 16 (2009), pp. 321-340
[3] E. Bouin, V. Calvez, G. Nadin, Hyperbolic traveling waves driven by growth, preprint, 2011.
[4] Some properties of viscosity solutions of Hamilton–Jacobi equations, Trans. Amer. Math. Soc., Volume 282 (1984), pp. 487-502
[5] C. Cuesta, S. Hittmeir, C. Schmeiser, Traveling waves of a kinetic transport model for the KPP–Fisher equation, preprint, 2010.
[6] The perturbed test function method for viscosity solutions of nonlinear PDE, Proc. Roy. Soc. Edinburgh Sect. A, Volume 111 (1989), pp. 359-375
[7] A survey of entropy methods for partial differential equations, Bull. Amer. Math. Soc., Volume 41 (2004), pp. 409-438
[8] A PDE approach to some asymptotic problems concerning random differential equations with small noise intensities, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 2 (1985), pp. 1-20
[9] A PDE approach to geometric optics for certain semilinear parabolic equations, Indiana Univ. Math. J., Volume 38 (1989), pp. 141-172
[10] Wave front for a reaction–diffusion system and relativistic Hamilton–Jacobi dynamics, Phys. Rev. E, Volume 59 (1999) no. 3, pp. 5040-5044
[11] PDE-viscosity solution approach to some problems of large deviations, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Sér, Volume 13 (1986) no. 2, pp. 171-192
[12] Geometric optics approach to reaction–diffusion equations, SIAM J. Appl. Math., Volume 46 (1986), pp. 222-232
[13] Random Perturbations of Dynamical Systems, Grundlehren Math. Wiss., vol. 260, Springer-Verlag, New York, 1998
Cité par Sources :
Commentaires - Politique