For a general second order elliptic operator P in a domain Ω, we construct a Hardy weight W in the punctured domain such that is subcritical in for , null-critical in for , and supercritical near infinity and near 0 for . Our method is based on the theory of positive solutions and applies to both symmetric and nonsymmetric operators. The constructed Hardy weight is given by an explicit formula involving the Green function of P and its gradient.
Soit P un opérateur elliptique du second ordre sur un domaine Ω. On construit un poids W, tel que si est un domaine épointé, alors est sous-critique sur pour , nul-critique dans pour , et supercritique à lʼinfini et en 0 pour . Notre approche repose sur la théorie des solutions positives dʼun opérateur elliptique du second ordre, et sʼapplique à la fois au cas symétrique et non symétrique. Le poids est de plus donné par une formule explicite faisant intervenir la fonction de Green de P et son gradient.
Accepted:
Published online:
Baptiste Devyver 1; Martin Fraas 2; Yehuda Pinchover 1
@article{CRMATH_2012__350_9-10_475_0, author = {Baptiste Devyver and Martin Fraas and Yehuda Pinchover}, title = {Optimal {Hardy-type} inequalities for elliptic operators}, journal = {Comptes Rendus. Math\'ematique}, pages = {475--479}, publisher = {Elsevier}, volume = {350}, number = {9-10}, year = {2012}, doi = {10.1016/j.crma.2012.04.020}, language = {en}, }
TY - JOUR AU - Baptiste Devyver AU - Martin Fraas AU - Yehuda Pinchover TI - Optimal Hardy-type inequalities for elliptic operators JO - Comptes Rendus. Mathématique PY - 2012 SP - 475 EP - 479 VL - 350 IS - 9-10 PB - Elsevier DO - 10.1016/j.crma.2012.04.020 LA - en ID - CRMATH_2012__350_9-10_475_0 ER -
Baptiste Devyver; Martin Fraas; Yehuda Pinchover. Optimal Hardy-type inequalities for elliptic operators. Comptes Rendus. Mathématique, Volume 350 (2012) no. 9-10, pp. 475-479. doi : 10.1016/j.crma.2012.04.020. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.04.020/
[1] Role of the fundamental solution in Hardy–Sobolev-type inequalities, Proc. Roy. Soc. Edinburgh Sect. A, Volume 136 (2006), pp. 1111-1130
[2] Some results and examples about the behavior of harmonic functions and Greenʼs functions with respect to second order elliptic operators, Nagoya Math. J., Volume 165 (2002), pp. 123-158
[3] A unified approach to improved Hardy inequalities with best constants, Trans. Amer. Math. Soc., Volume 356 (2004), pp. 2169-2196
[4] Inégalités de Hardy sur les variétés riemaniennes non-compactes, J. Math. Pures Appl., Volume 76 (1997), pp. 883-891
[5] Optimal Hardy inequalities for general elliptic operators with improvements, Commun. Pure Appl. Anal., Volume 9 (2010), pp. 109-140
[6] On the structure of Hardy–Sobolev–Mazʼya inequalities, J. Eur. Math. Soc. (JEMS), Volume 11 (2009), pp. 1165-1185
[7] Weighted Poincaré inequality and rigidity of complete manifolds, Ann. Sci. École Norm. Sup. (4), Volume 39 (2006), pp. 921-982
[8] Topics in the theory of positive solutions of second-order elliptic and parabolic partial differential equations (F. Gesztesy et al., eds.), Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simonʼs 60th Birthday, Proc. of Sympos. in Pure Math., vol. 76, Amer. Math. Society, Providence, RI, 2007, pp. 329-356
Cited by Sources:
Comments - Policy