[Retour sur les théorèmes de densité de Landau dans les espaces de Paley–Wiener]
On présente ici une approche simple, et plutôt surprenante, des théorèmes de densité de Landau fournissant, pour lʼéchantillonnage et lʼinterpolation, des versions plus fortes des résultats connus. En particulier, on étend le théorème dʼinterpolation au spectre non borné.
We present a surprisingly simple approach to Landauʼs density theorems for sampling and interpolation, which provides stronger versions of these results. In particular, we extend the interpolation theorem to unbounded spectra.
Accepté le :
Publié le :
Shahaf Nitzan 1 ; Alexander Olevskii 2
@article{CRMATH_2012__350_9-10_509_0, author = {Shahaf Nitzan and Alexander Olevskii}, title = {Revisiting {Landau's} density theorems for {Paley{\textendash}Wiener} spaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {509--512}, publisher = {Elsevier}, volume = {350}, number = {9-10}, year = {2012}, doi = {10.1016/j.crma.2012.05.003}, language = {en}, }
Shahaf Nitzan; Alexander Olevskii. Revisiting Landauʼs density theorems for Paley–Wiener spaces. Comptes Rendus. Mathématique, Volume 350 (2012) no. 9-10, pp. 509-512. doi : 10.1016/j.crma.2012.05.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.05.003/
[1] The Collected Works of Arne Beurling, Contemporary Mathematics, vol. 2, Birkhäuser Boston Inc., Boston, MA, 1989
[2] On Landauʼs necessary density conditions for sampling and interpolation of band limited functions, J. Lond. Math. Soc., Volume 54 (1996) no. 3, pp. 557-565
[3] Sur les fonctions moyenne-periodiques bornées, Ann. Inst. Fourier, Volume 7 (1957), pp. 293-314
[4] Necessary density conditions for sampling and interpolation of certain entire functions, Acta Math., Volume 117 (1967), pp. 37-52
[5] Interpolation in Bernstein and Paley–Wiener spaces, J. Funct. Anal., Volume 256 (2009) no. 10, pp. 3257-3278
[6] Approximation of discrete functions and size of spectrum, St. Petersburg Math. J., Volume 21 (2010), pp. 1015-1025
[7] Incompleteness of sparse coherent states, Appl. Comput. Harmon. Anal., Volume 2 (1995) no. 2, pp. 148-153
[8] An Introduction to Nonharmonic Fourier Series, Academic Press, 2001
Cité par Sources :
☆ Research supported in part by Israel Science Foundation.
Commentaires - Politique