[Mesures de Gibbs et équations non-linéaires des ondes et de Schrödinger sur la boule]
On démontre des résultats nouveaux sur les solutions radiales de lʼéquation des ondes et lʼéquation de Schrödinger sur la boule B dans et pour des conditions initiales aléatoires. Plus exactement, on établit une dynamique bien définie et unique sur le support de la mesure de Gibbs. Ceci complète des résultats de Burq et Tzvetkov (2008) [8,9] et Tzvetkov (2006, 2008) [10,11].
We establish new results for the radial nonlinear wave and Schrödinger equations on the ball in and , for random initial data. More precisely, a well-defined and unique dynamics is obtained on the support of the corresponding Gibbs measure. This complements results from Burq and Tzvetkov (2008) [8,9] and Tzvetkov (2006, 2008) [10,11].
Accepté le :
Publié le :
Jean Bourgain 1 ; Aynur Bulut 1
@article{CRMATH_2012__350_11-12_571_0, author = {Jean Bourgain and Aynur Bulut}, title = {Gibbs measure evolution in radial nonlinear wave and {Schr\"odinger} equations on the ball}, journal = {Comptes Rendus. Math\'ematique}, pages = {571--575}, publisher = {Elsevier}, volume = {350}, number = {11-12}, year = {2012}, doi = {10.1016/j.crma.2012.05.006}, language = {en}, }
TY - JOUR AU - Jean Bourgain AU - Aynur Bulut TI - Gibbs measure evolution in radial nonlinear wave and Schrödinger equations on the ball JO - Comptes Rendus. Mathématique PY - 2012 SP - 571 EP - 575 VL - 350 IS - 11-12 PB - Elsevier DO - 10.1016/j.crma.2012.05.006 LA - en ID - CRMATH_2012__350_11-12_571_0 ER -
Jean Bourgain; Aynur Bulut. Gibbs measure evolution in radial nonlinear wave and Schrödinger equations on the ball. Comptes Rendus. Mathématique, Volume 350 (2012) no. 11-12, pp. 571-575. doi : 10.1016/j.crma.2012.05.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.05.006/
[1] Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal., Volume 3 (1993) no. 2, pp. 107-156
[2] Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV equation, Geom. Funct. Anal., Volume 3 (1993) no. 3, pp. 209-262
[3] Periodic nonlinear Schrödinger equation in invariant measures, CMP, Volume 166 (1994), pp. 1-26
[4] Invariant measures for the 2D-defocusing nonlinear Schrödinger equation, CMP, Volume 176 (1996), pp. 421-445
[5] Invariant measures for the Gross–Piatevskii equation, J. Math. Pures Appl. (9), Volume 76 (1997) no. 8, pp. 649-702
[6] Nonlinear Schrödinger Equations, IAS/Park City Math. Ser., vol. 5, American Mathematical Society, Providence, RI, 1999
[7] A remark on normal forms and the ‘I-method’ for periodic NLS, J. Anal. Math., Volume 94 (2004), pp. 125-157
[8] Random data Cauchy theory for supercritical wave equations, I (local theory), Invent. Math., Volume 173 (2008) no. 3, pp. 449-475
[9] Random data Cauchy theory for supercritical wave equations, II (a global existence result), Invent. Math., Volume 173 (2008) no. 3, pp. 977-996
[10] Invariant measures for the nonlinear Schrödinger equation on the disc, Dyn. Partial Differ. Equ., Volume 3 (2006), pp. 111-160
[11] Invariant measures for the defocusing nonlinear Schrödinger equation, Ann. Inst. Fourier (Grenoble), Volume 58 (2008) no. 7, pp. 2543-2609
Cité par Sources :
☆ The research of J.B. was partially supported by NSF grants DMS-0808042 and DMS-0835373 and the research of A.B. was supported by NSF under agreement Nos. DMS-0635607 and DMS-0808042.
Commentaires - Politique