[Mesures de Gibbs et équations non-linéaires des ondes et de Schrödinger sur la boule]
On démontre des résultats nouveaux sur les solutions radiales de lʼéquation des ondes et lʼéquation de Schrödinger sur la boule B dans
We establish new results for the radial nonlinear wave and Schrödinger equations on the ball in
Accepté le :
Publié le :
Jean Bourgain 1 ; Aynur Bulut 1
@article{CRMATH_2012__350_11-12_571_0, author = {Jean Bourgain and Aynur Bulut}, title = {Gibbs measure evolution in radial nonlinear wave and {Schr\"odinger} equations on the ball}, journal = {Comptes Rendus. Math\'ematique}, pages = {571--575}, publisher = {Elsevier}, volume = {350}, number = {11-12}, year = {2012}, doi = {10.1016/j.crma.2012.05.006}, language = {en}, }
TY - JOUR AU - Jean Bourgain AU - Aynur Bulut TI - Gibbs measure evolution in radial nonlinear wave and Schrödinger equations on the ball JO - Comptes Rendus. Mathématique PY - 2012 SP - 571 EP - 575 VL - 350 IS - 11-12 PB - Elsevier DO - 10.1016/j.crma.2012.05.006 LA - en ID - CRMATH_2012__350_11-12_571_0 ER -
Jean Bourgain; Aynur Bulut. Gibbs measure evolution in radial nonlinear wave and Schrödinger equations on the ball. Comptes Rendus. Mathématique, Volume 350 (2012) no. 11-12, pp. 571-575. doi : 10.1016/j.crma.2012.05.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.05.006/
[1] Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal., Volume 3 (1993) no. 2, pp. 107-156
[2] Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV equation, Geom. Funct. Anal., Volume 3 (1993) no. 3, pp. 209-262
[3] Periodic nonlinear Schrödinger equation in invariant measures, CMP, Volume 166 (1994), pp. 1-26
[4] Invariant measures for the 2D-defocusing nonlinear Schrödinger equation, CMP, Volume 176 (1996), pp. 421-445
[5] Invariant measures for the Gross–Piatevskii equation, J. Math. Pures Appl. (9), Volume 76 (1997) no. 8, pp. 649-702
[6] Nonlinear Schrödinger Equations, IAS/Park City Math. Ser., vol. 5, American Mathematical Society, Providence, RI, 1999
[7] A remark on normal forms and the ‘I-method’ for periodic NLS, J. Anal. Math., Volume 94 (2004), pp. 125-157
[8] Random data Cauchy theory for supercritical wave equations, I (local theory), Invent. Math., Volume 173 (2008) no. 3, pp. 449-475
[9] Random data Cauchy theory for supercritical wave equations, II (a global existence result), Invent. Math., Volume 173 (2008) no. 3, pp. 977-996
[10] Invariant measures for the nonlinear Schrödinger equation on the disc, Dyn. Partial Differ. Equ., Volume 3 (2006), pp. 111-160
[11] Invariant measures for the defocusing nonlinear Schrödinger equation, Ann. Inst. Fourier (Grenoble), Volume 58 (2008) no. 7, pp. 2543-2609
- A Microscopic Derivation of Gibbs Measures for Nonlinear Schrödinger Equations with Unbounded Interaction Potentials, International Mathematics Research Notices, Volume 2022 (2022) no. 19, p. 14964 | DOI:10.1093/imrn/rnab132
- Gibbs Measures of Nonlinear Schrödinger Equations as Limits of Quantum Many-Body States in Dimension d ≤ 3, Frontiers in Analysis and Probability (2020), p. 371 | DOI:10.1007/978-3-030-56409-4_9
- Gibbs Measures of Nonlinear Schrödinger Equations as Limits of Many-Body Quantum States in Dimensions
d ⩽ 3, Communications in Mathematical Physics, Volume 356 (2017) no. 3, p. 883 | DOI:10.1007/s00220-017-2994-7 - Randomization and the Gross–Pitaevskii Hierarchy, Archive for Rational Mechanics and Analysis, Volume 218 (2015) no. 1, p. 417 | DOI:10.1007/s00205-015-0863-0
- Almost Sure Global Well-posedness for the Fractional Cubic Schrödinger Equation on the Torus, Canadian Mathematical Bulletin, Volume 58 (2015) no. 3, p. 471 | DOI:10.4153/cmb-2015-025-7
- Local existence of solutions to randomized Gross-Pitaevskii hierarchies, Transactions of the American Mathematical Society, Volume 368 (2015) no. 3, p. 1759 | DOI:10.1090/tran/6479
- Almost sure global well posedness for the radial nonlinear Schrödinger equation on the unit ball I: The 2D case, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 31 (2014) no. 6, p. 1267 | DOI:10.1016/j.anihpc.2013.09.002
- Invariant Gibbs measure evolution for the radial nonlinear wave equation on the 3d ball, Journal of Functional Analysis, Volume 266 (2014) no. 4, p. 2319 | DOI:10.1016/j.jfa.2013.06.002
Cité par 8 documents. Sources : Crossref
☆ The research of J.B. was partially supported by NSF grants DMS-0808042 and DMS-0835373 and the research of A.B. was supported by NSF under agreement Nos. DMS-0635607 and DMS-0808042.
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier