Comptes Rendus
Partial Differential Equations
A Note on the Cauchy problem for the 2D generalized Zakharov–Kuznetsov equations
[Une Note sur le problème de Cauchy pour les équations de Zakharov–Kuznetsov 2D généralisées]
Comptes Rendus. Mathématique, Volume 350 (2012) no. 9-10, pp. 499-503.

In this Note we study the generalized 2D Zakharov–Kuznetsov equations tu+Δxu+ukxu=0 for k2. By an iterative method we prove the local well-posedness of these equations in the Sobolev spaces Hs(R2) for s>1/4 if k=2, s>5/12 if k=3 and s>12/k if k4.

Nous étudions dans cette Note les équations de Zakharov–Kuznetsov 2D généralisées tu+Δxu+ukxu=0 pour k2. Il est établi que le problème de Cauchy peut être résolu par une méthode itérative dans les espaces de Sobolev Hs(R2) pour s>1/4 si k=2, s>5/12 si k=3 et s>12/k si k4.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2012.05.007

Francis Ribaud 1 ; Stéphane Vento 2

1 Laboratoire dʼanalyse et de mathématiques appliquées, Université Paris-est, 5 boulevard Descartes, Champs-Sur-Marne, 77454 Marne-La-Vallée cedex 2, France
2 Laboratoire analyse, géométrie et applications, Université Paris 13, Institut Galilée, 99, avenue J.B. Clément, 93430 Villetaneuse, France
@article{CRMATH_2012__350_9-10_499_0,
     author = {Francis Ribaud and St\'ephane Vento},
     title = {A {Note} on the {Cauchy} problem for the {2D} generalized {Zakharov{\textendash}Kuznetsov} equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {499--503},
     publisher = {Elsevier},
     volume = {350},
     number = {9-10},
     year = {2012},
     doi = {10.1016/j.crma.2012.05.007},
     language = {en},
}
TY  - JOUR
AU  - Francis Ribaud
AU  - Stéphane Vento
TI  - A Note on the Cauchy problem for the 2D generalized Zakharov–Kuznetsov equations
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 499
EP  - 503
VL  - 350
IS  - 9-10
PB  - Elsevier
DO  - 10.1016/j.crma.2012.05.007
LA  - en
ID  - CRMATH_2012__350_9-10_499_0
ER  - 
%0 Journal Article
%A Francis Ribaud
%A Stéphane Vento
%T A Note on the Cauchy problem for the 2D generalized Zakharov–Kuznetsov equations
%J Comptes Rendus. Mathématique
%D 2012
%P 499-503
%V 350
%N 9-10
%I Elsevier
%R 10.1016/j.crma.2012.05.007
%G en
%F CRMATH_2012__350_9-10_499_0
Francis Ribaud; Stéphane Vento. A Note on the Cauchy problem for the 2D generalized Zakharov–Kuznetsov equations. Comptes Rendus. Mathématique, Volume 350 (2012) no. 9-10, pp. 499-503. doi : 10.1016/j.crma.2012.05.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.05.007/

[1] A.V. Faminskii The Cauchy problem for the Zakharov–Kuznetsov equation, Differential Equations, Volume 31 (1995) no. 6, pp. 1002-1012

[2] L.G. Farah; F. Linares; A. Pastor A note on the 2D generalized Zakharov–Kuznetsov equation: local, global, and scattering results, 2011 | arXiv

[3] C.E. Kenig; G. Ponce; L. Vega Well-posedness and scattering results for the generalized Korteweg–de Vries equation via the contraction principle, Comm. Pure Appl. Math., Volume 46 (1993) no. 4, pp. 527-620

[4] F. Linares; A. Pastor Well-posedness for the two-dimensional modified Zakharov–Kuznetsov equation, SIAM J. Math. Anal., Volume 41 (2009) no. 4, pp. 1323-1339

[5] F. Linares; A. Pastor Local and global well-posedness for the 2D generalized Zakharov–Kuznetsov equation, J. Funct. Anal., Volume 260 (2011) no. 4, pp. 1060-1085

[6] F. Ribaud; S. Vento Well-posedness results for the 3D Zakharov–Kuznetsov equation (preprint) | arXiv

[7] S. Vento Well-posedness for the generalized Benjamin–Ono equations with arbitrary large initial data in the critical space, Int. Math. Res. Not. IMRN (2) (2010), pp. 297-319

[8] V.E. Zakharov; E.A. Kuznetsov On three dimensional solitons, Sov. Phys. JETP, Volume 39 (1974), pp. 285-286

  • Gezi Chong; Jianxia He On exponential decay properties of solutions of the (3 + 1)-dimensional modified Zakharov-Kuznetsov equation, Electronic Research Archive, Volume 33 (2025) no. 1, p. 447 | DOI:10.3934/era.2025022
  • Wei Yan; Weimin Wang; Xiangqian Yan Pointwise convergence and nonlinear smoothing of the generalized Zakharov-Kuznetsov equation, Forum Mathematicum, Volume 37 (2025) no. 2, pp. 637-661 | DOI:10.1515/forum-2023-0463 | Zbl:7984280
  • Tegegne Getachew New Lower Bound for the Radius of Analyticity for the Modified 2D Zakharov–Kuznetsov Equation, Mathematical Methods in the Applied Sciences (2025) | DOI:10.1002/mma.10823
  • Wei Yan; Weimin Wang Uniform convergence of the one-dimensional cubic Schrödinger equation, Applicable Analysis, Volume 103 (2024) no. 18, pp. 3374-3381 | DOI:10.1080/00036811.2024.2353730 | Zbl:1554.35311
  • M. S. Bruzón; T. M. Garrido; R. de la Rosa Travelling wave solutions for a Zakharov-Kuznetsov modified equal width equations, Journal of Computational and Applied Mathematics, Volume 436 (2024), p. 7 (Id/No 114397) | DOI:10.1016/j.cam.2022.114397 | Zbl:1529.35436
  • Luiz Gustavo Farah; Luc Molinet A note on the well-posedness in the energy space for the generalized ZK equation posed on R×T, NoDEA. Nonlinear Differential Equations and Applications, Volume 31 (2024) no. 5, p. 18 (Id/No 76) | DOI:10.1007/s00030-024-00964-1 | Zbl:1543.35202
  • Ikki Fukuda; Hiroyuki Hirayama Optimal decay estimate and asymptotic profile for solutions to the generalized Zakharov-Kuznetsov-Burgers equation in 2D, Nonlinear Analysis. Real World Applications, Volume 79 (2024), p. 30 (Id/No 104130) | DOI:10.1016/j.nonrwa.2024.104130 | Zbl:1544.35046
  • Simão Correia; Filipe Oliveira; Jorge Drumond Silva Sharp local well-posedness and nonlinear smoothing for dispersive equations through frequency-restricted estimates, SIAM Journal on Mathematical Analysis, Volume 56 (2024) no. 4, pp. 5604-5633 | DOI:10.1137/23m156923x | Zbl:1546.35186
  • Sebastian Herr; Shinya Kinoshita Subcritical well-posedness results for the Zakharov-Kuznetsov equation in dimension three and higher, Annales de l'Institut Fourier, Volume 73 (2023) no. 3, pp. 1203-1267 | DOI:10.5802/aif.3547 | Zbl:1515.35249
  • Haotian Qian; Minjie Shan Local well-posedness and spatial analyticity for the generalized Zakharov-Kuznetsov equation, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 235 (2023), p. 16 (Id/No 113344) | DOI:10.1016/j.na.2023.113344 | Zbl:1522.35448
  • Christian Klein; Jean-Claude Saut; Nikola Stoilov Numerical study of the transverse stability of line solitons of the Zakharov-Kuznetsov equations, Physica D, Volume 448 (2023), p. 11 (Id/No 133722) | DOI:10.1016/j.physd.2023.133722 | Zbl:1514.35093
  • M. Castelli; G. Doronin; M. V. Padilha Modified Zakharov-Kuznetsov equation posed on a half-strip, Applied Mathematics and Optimization, Volume 85 (2022) no. 3, p. 20 (Id/No 34) | DOI:10.1007/s00245-022-09877-w | Zbl:1487.35071
  • Shinya Kinoshita Well-posedness for the Cauchy Problem of the Modified Zakharov-Kuznetsov Equation, Funkcialaj Ekvacioj, Volume 65 (2022) no. 2, p. 139 | DOI:10.1619/fesi.65.139
  • A. V. Faminskii On inner regularity of solutions of two-dimensional Zakharov-Kuznetsov equation, Journal of Mathematical Sciences (New York), Volume 265 (2022) no. 2, pp. 313-344 | DOI:10.1007/s10958-022-06054-w | Zbl:1504.35441
  • F. Linares; A. Pastor; J. Drumond Silva Dispersive blow-up for solutions of the Zakharov-Kuznetsov equation, Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, Volume 38 (2021) no. 2, pp. 281-300 | DOI:10.1016/j.anihpc.2020.07.002 | Zbl:1458.35375
  • Shinya Kinoshita Global well-posedness for the Cauchy problem of the Zakharov-Kuznetsov equation in 2D, Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, Volume 38 (2021) no. 2, pp. 451-505 | DOI:10.1016/j.anihpc.2020.08.003 | Zbl:1458.35373
  • Felipe Linares; João P. G. Ramos The Cauchy problem for the L2-critical generalized Zakharov-Kuznetsov equation in dimension 3, Communications in Partial Differential Equations, Volume 46 (2021) no. 9, pp. 1601-1627 | DOI:10.1080/03605302.2021.1888119 | Zbl:1477.35221
  • Razvan Mosincat; Didier Pilod; Jean-Claude Saut Global well-posedness and scattering for the Dysthe equation in L2(R2), Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 149 (2021), pp. 73-97 | DOI:10.1016/j.matpur.2020.11.001 | Zbl:1467.35261
  • M. Castelli; G. Doronin Modified and subcritical Zakharov-Kuznetsov equations posed on rectangles, Journal of Differential Equations, Volume 275 (2021), pp. 554-580 | DOI:10.1016/j.jde.2020.11.025 | Zbl:1456.35090
  • Andrei V. Faminskii Initial-boundary value problems on a half-strip for the modified Zakharov-Kuznetsov equation, Journal of Evolution Equations, Volume 21 (2021) no. 2, pp. 1263-1298 | DOI:10.1007/s00028-020-00624-8 | Zbl:1476.35222
  • Minjie Shan; Liqun Zhang Lower bounds on the radius of spatial analyticity for the 2D generalized Zakharov-Kuznetsov equation, Journal of Mathematical Analysis and Applications, Volume 501 (2021) no. 2, p. 13 (Id/No 125218) | DOI:10.1016/j.jmaa.2021.125218 | Zbl:1467.76077
  • Christian Klein; Svetlana Roudenko; Nikola Stoilov Numerical study of Zakharov-Kuznetsov equations in two dimensions, Journal of Nonlinear Science, Volume 31 (2021) no. 2, p. 29 (Id/No 26) | DOI:10.1007/s00332-021-09680-x | Zbl:1464.35298
  • Ricardo Grande; Kristin M. Kurianski; Gigliola Staffilani On the nonlinear Dysthe equation, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 207 (2021), p. 36 (Id/No 112292) | DOI:10.1016/j.na.2021.112292 | Zbl:1464.35224
  • Felipe Linares; Ademir Pastor; Marcia Scialom Existence of solutions for the surface electromigration equation, Nonlinearity, Volume 34 (2021) no. 8, pp. 5213-5233 | DOI:10.1088/1361-6544/abfae6 | Zbl:1473.35531
  • Debdeep Bhattacharya Mass-concentration of low-regularity blow-up solutions to the focusing 2D modified Zakharov-Kuznetsov equation, SN Partial Differential Equations and Applications, Volume 2 (2021) no. 6, p. 29 (Id/No 83) | DOI:10.1007/s42985-021-00139-y | Zbl:1476.35221
  • Felipe Linares; João P. G. Ramos Maximal function estimates and local well-posedness for the generalized Zakharov-Kuznetsov equation, SIAM Journal on Mathematical Analysis, Volume 53 (2021) no. 1, pp. 914-936 | DOI:10.1137/20m1344524 | Zbl:1457.42031
  • Yan-Hong Liang; Kang-Jia Wang Generalized Variational Principle for the Fractal (2 + 1)-Dimensional Zakharov–Kuznetsov Equation in Quantum Magneto-Plasmas, Symmetry, Volume 13 (2021) no. 6, p. 1022 | DOI:10.3390/sym13061022
  • Frédéric Valet Asymptotic K-soliton-like solutions of the Zakharov-Kuznetsov type equations, Transactions of the American Mathematical Society, Volume 374 (2021) no. 5, pp. 3177-3213 | DOI:10.1090/tran/8331 | Zbl:1466.35318
  • M. S. Bruzon; E. Recio; T. M. Garrido; R. de la Rosa, INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019, Volume 2293 (2020), p. 220005 | DOI:10.1063/5.0027730
  • Debdeep Bhattacharya; Luiz Gustavo Farah; Svetlana Roudenko Global well-posedness for low regularity data in the 2d modified Zakharov-Kuznetsov equation, Journal of Differential Equations, Volume 268 (2020) no. 12, pp. 7962-7997 | DOI:10.1016/j.jde.2019.11.092 | Zbl:1435.35332
  • Simão Correia; Jorge Drumond Silva Nonlinear smoothing for dispersive PDE: a unified approach, Journal of Differential Equations, Volume 269 (2020) no. 5, pp. 4253-4285 | DOI:10.1016/j.jde.2020.03.038 | Zbl:1434.35154
  • Luiz Gustavo Farah; Justin Holmer; Svetlana Roudenko Instability of solitons in the 2D cubic Zakharov-Kuznetsov equation, Nonlinear dispersive partial differential equations and inverse scattering. Papers from the focus program on “Nonlinear Dispersive Partial Differential Equations and Inverse Scattering”, Fields Institute, July 31 – August 18, 2017, New York, NY: Springer; Toronto, ON: The Fields Institute for Research in Mathematical Scienes, 2019, pp. 295-371 | DOI:10.1007/978-1-4939-9806-7_6 | Zbl:1440.35267
  • Luiz Gustavo Farah; Justin Holmer; Svetlana Roudenko Instability of solitons – revisited. II: The supercritical Zakharov-Kuznetsov equation, Nonlinear dispersive waves and fluids. AMS special sessions on spectral calculus and quasilinear partial differential equations, and PDE analysis on fluid flows, Atlanta, GA, USA, January 5–7, 2017, Providence, RI: American Mathematical Society (AMS), 2019, pp. 89-109 | DOI:10.1090/conm/725/14547 | Zbl:1423.35337
  • Andrei V. Faminskii Initial-boundary value problems in a half-strip for two-dimensional Zakharov-Kuznetsov equation, Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, Volume 35 (2018) no. 5, pp. 1235-1265 | DOI:10.1016/j.anihpc.2017.11.003 | Zbl:1393.35203
  • Felipe Linares; Gustavo Ponce On special regularity properties of solutions of the Zakharov-Kuznetsov equation, Communications on Pure and Applied Analysis, Volume 17 (2018) no. 4, pp. 1561-1572 | DOI:10.3934/cpaa.2018074 | Zbl:1397.35259
  • Tomoya Kato The Cauchy problem for the generalized Zakharov-Kuznetsov equation on modulation spaces, Journal of Differential Equations, Volume 264 (2018) no. 5, pp. 3402-3444 | DOI:10.1016/j.jde.2017.11.020 | Zbl:1380.35065
  • Andrei V. Faminskii Initial-boundary value problems in a rectangle for two-dimensional Zakharov-Kuznetsov equation, Journal of Mathematical Analysis and Applications, Volume 463 (2018) no. 2, pp. 760-793 | DOI:10.1016/j.jmaa.2018.03.048 | Zbl:1390.35306
  • Tomoya Kato Well-posedness for the generalized Zakharov-Kuznetsov equation on modulation spaces, The Journal of Fourier Analysis and Applications, Volume 23 (2017) no. 3, pp. 612-655 | DOI:10.1007/s00041-016-9480-z | Zbl:1372.35276
  • Raphaël Côte; Claudio Muñoz; Didier Pilod; Gideon Simpson Asymptotic stability of high-dimensional Zakharov-Kuznetsov solitons, Archive for Rational Mechanics and Analysis, Volume 220 (2016) no. 2, pp. 639-710 | DOI:10.1007/s00205-015-0939-x | Zbl:1334.35276
  • Eddye Bustamante; José Jiménez Urrea; Jorge Mejía The Zakharov-Kuznetsov equation in weighted Sobolev spaces, Journal of Mathematical Analysis and Applications, Volume 433 (2016) no. 1, pp. 149-175 | DOI:10.1016/j.jmaa.2015.07.024 | Zbl:1330.35373
  • G. Fonseca; M. Pachón Well-posedness for the two dimensional generalized Zakharov-Kuznetsov equation in anisotropic weighted Sobolev spaces, Journal of Mathematical Analysis and Applications, Volume 443 (2016) no. 1, pp. 566-584 | DOI:10.1016/j.jmaa.2016.05.028 | Zbl:1342.35074
  • Axel Grünrock; Sebastian Herr The Fourier restriction norm method for the Zakharov-Kuznetsov equation, Discrete and Continuous Dynamical Systems, Volume 34 (2014) no. 5, pp. 2061-2068 | DOI:10.3934/dcds.2014.34.2061 | Zbl:1280.35124
  • Nikolai A. Larkin Exponential decay of the H1-norm for the 2D Zakharov-Kuznetsov equation on a half-strip, Journal of Mathematical Analysis and Applications, Volume 405 (2013) no. 1, pp. 326-335 | DOI:10.1016/j.jmaa.2013.04.011 | Zbl:1306.35110
  • David Lannes; Felipe Linares; Jean-Claude Saut The Cauchy Problem for the Euler–Poisson System and Derivation of the Zakharov–Kuznetsov Equation, Studies in Phase Space Analysis with Applications to PDEs, Volume 84 (2013), p. 181 | DOI:10.1007/978-1-4614-6348-1_10
  • Xiaofeng Li The improved Riccati equation method and exact solutions to mZK equation, International Journal of Differential Equations, Volume 2012 (2012), p. 11 (Id/No 596762) | DOI:10.1155/2012/596762 | Zbl:1251.34005
  • Jean-Claude Saut; Roger Temam; Chuntian Wang An initial and boundary-value problem for the Zakharov-Kuznestov equation in a bounded domain, Journal of Mathematical Physics, Volume 53 (2012) no. 11, p. 115612 | DOI:10.1063/1.4752102 | Zbl:1278.35221

Cité par 46 documents. Sources : Crossref, zbMATH

Commentaires - Politique