Comptes Rendus
Partial Differential Equations/Optimal Control
Controllability of cascade coupled systems of multi-dimensional evolution PDEs by a reduced number of controls
[Contrôlabilité de systèmes multi-dimensionnels couplés en cascade par un nombre réduit de contrôles]
Comptes Rendus. Mathématique, Volume 350 (2012) no. 11-12, pp. 577-582.

Nous démontrons quʼil est possible de contrôler des systèmes de N équations dʼévolution faiblement couplées en cascade par un nombre réduit de contrôles frontière ou localement distribués, le nombre de contrôle pouvant varier de 1 à N1. Nous donnons des applications aux systèmes couplés multi-dimensionnels en cascade hyperboliques, paraboliques et de Schrödinger.

We prove controllability results for abstract systems of weakly coupled N evolution equations in cascade by a reduced number of boundary or locally distributed controls ranging from a single up to N1 controls. We give applications to cascade coupled systems of N multi-dimensional hyperbolic, parabolic and diffusive equations.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2012.05.009

Fatiha Alabau-Boussouira 1

1 LMAM CNRS-UMR 7122 et INRIA Equipe-projet CORIDA, Université de Lorraine, Ile du Saulcy, 57045 Metz cedex 01, France
@article{CRMATH_2012__350_11-12_577_0,
     author = {Fatiha Alabau-Boussouira},
     title = {Controllability of cascade coupled systems of multi-dimensional evolution {PDEs} by a reduced number of controls},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {577--582},
     publisher = {Elsevier},
     volume = {350},
     number = {11-12},
     year = {2012},
     doi = {10.1016/j.crma.2012.05.009},
     language = {en},
}
TY  - JOUR
AU  - Fatiha Alabau-Boussouira
TI  - Controllability of cascade coupled systems of multi-dimensional evolution PDEs by a reduced number of controls
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 577
EP  - 582
VL  - 350
IS  - 11-12
PB  - Elsevier
DO  - 10.1016/j.crma.2012.05.009
LA  - en
ID  - CRMATH_2012__350_11-12_577_0
ER  - 
%0 Journal Article
%A Fatiha Alabau-Boussouira
%T Controllability of cascade coupled systems of multi-dimensional evolution PDEs by a reduced number of controls
%J Comptes Rendus. Mathématique
%D 2012
%P 577-582
%V 350
%N 11-12
%I Elsevier
%R 10.1016/j.crma.2012.05.009
%G en
%F CRMATH_2012__350_11-12_577_0
Fatiha Alabau-Boussouira. Controllability of cascade coupled systems of multi-dimensional evolution PDEs by a reduced number of controls. Comptes Rendus. Mathématique, Volume 350 (2012) no. 11-12, pp. 577-582. doi : 10.1016/j.crma.2012.05.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.05.009/

[1] F. Alabau-Boussouira Indirect boundary observability of a weakly coupled wave system, C. R. Acad. Sci. Paris, Ser. I, Volume 333 (2001), pp. 645-650

[2] F. Alabau-Boussouira A two-level energy method for indirect boundary observability and controllability of weakly coupled hyperbolic systems, SIAM J. Control Optim., Volume 42 (2003), pp. 871-906

[3] F. Alabau-Boussouira, Insensitizing controls for the scalar wave equation and exact controllability of 2-coupled cascade systems of PDEs by a single control, submitted for publication.

[4] F. Alabau-Boussouira; M. Léautaud Indirect controllability of locally coupled systems under geometric conditions, C. R. Acad. Sci. Paris, Ser. I, Volume 349 (2011), pp. 395-400

[5] F. Alabau-Boussouira, M. Léautaud, Indirect controllability of locally coupled wave-type systems and applications, J. Math. Pures Appl., in press.

[6] F. Ammar-Khodja; A. Benabdallah; C. Dupaix Null controllability of some reaction-diffusion systems with one control force, J. Math. Anal. Appl., Volume 320 (2006), pp. 928-943

[7] F. Ammar-Khodja; A. Benabdallah; C. Dupaix; M. González-Burgos A Kalman rank condition for the localized distributed controllability of a class of linear parabolic systems, J. Evol. Equ., Volume 9 (2009), pp. 267-291

[8] F. Ammar-Khodja; A. Benabdallah; M. González-Burgos; L. de Teresa Recent results on the controllability of linear coupled parabolic problems: a survey, Math. Control Related Fields, Volume 1 (2011), pp. 267-306

[9] C. Bardos; G. Lebeau; J. Rauch Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., Volume 30 (1992), pp. 1024-1065

[10] O. Bodart; C. Fabre Controls insensitizing the norm of the solution of a semilinear heat equation, J. Math. Anal. Appl., Volume 195 (1995), pp. 658-683

[11] O. Bodart; M. González-Burgos; R. Pérez-García Existence of insensitizing controls for a semilinear heat equation with a superlinear nonlinearity, Comm. Partial Differential Equations, Volume 29 (2004), pp. 1017-1050

[12] O. Bodart; M. González-Burgos; R. Pérez-García A local result on insensitizing controls for a semilinear heat equation with nonlinear boundary Fourier conditions, SIAM J. Control Optim., Volume 43 (2004), pp. 95-969

[13] N. Burq Contrôlabilité exacte des ondes dans des ouverts peu réguliers, Asymptot. Anal., Volume 14 (1997), pp. 157-191

[14] N. Burq; P. Gérard Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes, C. R. Acad. Sci. Paris, Ser. I, Volume 325 (1997), pp. 749-752

[15] J.-M. Coron; S. Guerrero; L. Rosier Null controllability of a parabolic system with a cubic coupling term, SIAM J. Control Optim., Volume 48 (2010), pp. 5629-5653

[16] R. Dáger Insensitizing controls for the 1D wave equation, SIAM J. Control Optim., Volume 45 (2006), pp. 1758-1768

[17] E. Fernández-Cara; M. González-Burgos; L. de Teresa Boundary controllability of parabolic coupled equations, J. Funct. Anal., Volume 259 (2010), pp. 1720-1758

[18] M. González-Burgos; L. de Teresa Controllability results for cascade systems of m coupled parabolic PDEs by one control force, Port. Math., Volume 67 (2010), pp. 91-113

[19] S. Jaffard Contrôle interne exact des vibrations dʼune plaque rectangulaire, Port. Math., Volume 47 (1990), pp. 423-429

[20] O. Kavian; L. de Teresa Unique continuation principle for systems of parabolic equations, ESAIM Control Optim. Calc. Var., Volume 16 (2010), pp. 247-274

[21] M. Léautaud Spectral inequalities for non-selfadjoint elliptic operators and application to the null-controllability of parabolic systems, J. Funct. Anal., Volume 258 (2010), pp. 2739-2778

[22] M. Léautaud, Quelques problèmes de contrôle dʼéquations aux dérivées partielles : inégalités spectrales, systèmes couplés et limites singulières, Thèse de doctorat de lʼuniversité de Paris 6, 2011.

[23] J.L. Lions Contrôlabilité Exacte et Stabilisation de Systèmes Distribués, vols. 1–2, Masson, Paris, 1988

[24] J.L. Lions, Remarques préliminaires sur le contrôle des systèmes à données incomplètes, in: Actas del Congreso de Ecuaciones Diferenciales y Aplicaciones (CEDYA), Universidad de Málaga, 1989, pp. 43–54.

[25] L. Miller The control transmutation method and the cost of fast controls, SIAM J. Control Optim., Volume 45 (2006), pp. 762-772

[26] K.-D. Phung Observability and control of Schrödinger equations, SIAM J. Control Optim., Volume 40 (2001), pp. 211-230

[27] L. Rosier; L. de Teresa Exact controllability of a cascade system of conservative equations, C. R. Acad. Sci. Paris, Ser. I, Volume 349 (2011), pp. 291-296

[28] G. Tenenbaum; M. Tucsnak Fast and strongly localized observation for the Schrödinger equation, Trans. Amer. Math. Soc., Volume 351 (2009), pp. 951-977

[29] L. de Teresa Insensitizing controls for a semilinear heat equation, Comm. Partial Differential Equations, Volume 25 (2000), pp. 39-72

[30] L. de Teresa; E. Zuazua Identification of the class of initial data for the in sensitizing control of the heat equation, Comm. Pure Appl. Anal., Volume 8 (2009), pp. 457-471

Cité par Sources :

Commentaires - Politique