[Contrôlabilité de systèmes multi-dimensionnels couplés en cascade par un nombre réduit de contrôles]
Nous démontrons quʼil est possible de contrôler des systèmes de N équations dʼévolution faiblement couplées en cascade par un nombre réduit de contrôles frontière ou localement distribués, le nombre de contrôle pouvant varier de 1 à . Nous donnons des applications aux systèmes couplés multi-dimensionnels en cascade hyperboliques, paraboliques et de Schrödinger.
We prove controllability results for abstract systems of weakly coupled N evolution equations in cascade by a reduced number of boundary or locally distributed controls ranging from a single up to controls. We give applications to cascade coupled systems of N multi-dimensional hyperbolic, parabolic and diffusive equations.
Accepté le :
Publié le :
Fatiha Alabau-Boussouira 1
@article{CRMATH_2012__350_11-12_577_0, author = {Fatiha Alabau-Boussouira}, title = {Controllability of cascade coupled systems of multi-dimensional evolution {PDEs} by a reduced number of controls}, journal = {Comptes Rendus. Math\'ematique}, pages = {577--582}, publisher = {Elsevier}, volume = {350}, number = {11-12}, year = {2012}, doi = {10.1016/j.crma.2012.05.009}, language = {en}, }
TY - JOUR AU - Fatiha Alabau-Boussouira TI - Controllability of cascade coupled systems of multi-dimensional evolution PDEs by a reduced number of controls JO - Comptes Rendus. Mathématique PY - 2012 SP - 577 EP - 582 VL - 350 IS - 11-12 PB - Elsevier DO - 10.1016/j.crma.2012.05.009 LA - en ID - CRMATH_2012__350_11-12_577_0 ER -
%0 Journal Article %A Fatiha Alabau-Boussouira %T Controllability of cascade coupled systems of multi-dimensional evolution PDEs by a reduced number of controls %J Comptes Rendus. Mathématique %D 2012 %P 577-582 %V 350 %N 11-12 %I Elsevier %R 10.1016/j.crma.2012.05.009 %G en %F CRMATH_2012__350_11-12_577_0
Fatiha Alabau-Boussouira. Controllability of cascade coupled systems of multi-dimensional evolution PDEs by a reduced number of controls. Comptes Rendus. Mathématique, Volume 350 (2012) no. 11-12, pp. 577-582. doi : 10.1016/j.crma.2012.05.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.05.009/
[1] Indirect boundary observability of a weakly coupled wave system, C. R. Acad. Sci. Paris, Ser. I, Volume 333 (2001), pp. 645-650
[2] A two-level energy method for indirect boundary observability and controllability of weakly coupled hyperbolic systems, SIAM J. Control Optim., Volume 42 (2003), pp. 871-906
[3] F. Alabau-Boussouira, Insensitizing controls for the scalar wave equation and exact controllability of 2-coupled cascade systems of PDEs by a single control, submitted for publication.
[4] Indirect controllability of locally coupled systems under geometric conditions, C. R. Acad. Sci. Paris, Ser. I, Volume 349 (2011), pp. 395-400
[5] F. Alabau-Boussouira, M. Léautaud, Indirect controllability of locally coupled wave-type systems and applications, J. Math. Pures Appl., in press.
[6] Null controllability of some reaction-diffusion systems with one control force, J. Math. Anal. Appl., Volume 320 (2006), pp. 928-943
[7] A Kalman rank condition for the localized distributed controllability of a class of linear parabolic systems, J. Evol. Equ., Volume 9 (2009), pp. 267-291
[8] Recent results on the controllability of linear coupled parabolic problems: a survey, Math. Control Related Fields, Volume 1 (2011), pp. 267-306
[9] Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., Volume 30 (1992), pp. 1024-1065
[10] Controls insensitizing the norm of the solution of a semilinear heat equation, J. Math. Anal. Appl., Volume 195 (1995), pp. 658-683
[11] Existence of insensitizing controls for a semilinear heat equation with a superlinear nonlinearity, Comm. Partial Differential Equations, Volume 29 (2004), pp. 1017-1050
[12] A local result on insensitizing controls for a semilinear heat equation with nonlinear boundary Fourier conditions, SIAM J. Control Optim., Volume 43 (2004), pp. 95-969
[13] Contrôlabilité exacte des ondes dans des ouverts peu réguliers, Asymptot. Anal., Volume 14 (1997), pp. 157-191
[14] Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes, C. R. Acad. Sci. Paris, Ser. I, Volume 325 (1997), pp. 749-752
[15] Null controllability of a parabolic system with a cubic coupling term, SIAM J. Control Optim., Volume 48 (2010), pp. 5629-5653
[16] Insensitizing controls for the wave equation, SIAM J. Control Optim., Volume 45 (2006), pp. 1758-1768
[17] Boundary controllability of parabolic coupled equations, J. Funct. Anal., Volume 259 (2010), pp. 1720-1758
[18] Controllability results for cascade systems of m coupled parabolic PDEs by one control force, Port. Math., Volume 67 (2010), pp. 91-113
[19] Contrôle interne exact des vibrations dʼune plaque rectangulaire, Port. Math., Volume 47 (1990), pp. 423-429
[20] Unique continuation principle for systems of parabolic equations, ESAIM Control Optim. Calc. Var., Volume 16 (2010), pp. 247-274
[21] Spectral inequalities for non-selfadjoint elliptic operators and application to the null-controllability of parabolic systems, J. Funct. Anal., Volume 258 (2010), pp. 2739-2778
[22] M. Léautaud, Quelques problèmes de contrôle dʼéquations aux dérivées partielles : inégalités spectrales, systèmes couplés et limites singulières, Thèse de doctorat de lʼuniversité de Paris 6, 2011.
[23] Contrôlabilité Exacte et Stabilisation de Systèmes Distribués, vols. 1–2, Masson, Paris, 1988
[24] J.L. Lions, Remarques préliminaires sur le contrôle des systèmes à données incomplètes, in: Actas del Congreso de Ecuaciones Diferenciales y Aplicaciones (CEDYA), Universidad de Málaga, 1989, pp. 43–54.
[25] The control transmutation method and the cost of fast controls, SIAM J. Control Optim., Volume 45 (2006), pp. 762-772
[26] Observability and control of Schrödinger equations, SIAM J. Control Optim., Volume 40 (2001), pp. 211-230
[27] Exact controllability of a cascade system of conservative equations, C. R. Acad. Sci. Paris, Ser. I, Volume 349 (2011), pp. 291-296
[28] Fast and strongly localized observation for the Schrödinger equation, Trans. Amer. Math. Soc., Volume 351 (2009), pp. 951-977
[29] Insensitizing controls for a semilinear heat equation, Comm. Partial Differential Equations, Volume 25 (2000), pp. 39-72
[30] Identification of the class of initial data for the in sensitizing control of the heat equation, Comm. Pure Appl. Anal., Volume 8 (2009), pp. 457-471
Cité par Sources :
Commentaires - Politique