[Contrôlabilité exacte dʼun système en cascade dʼéquations conservatives]
On considère un système en cascade de deux équations conservatives et lʼon prouve la contrôlabilité du système complet lorsque chaque équation est contrôlable et que le groupe unitaire correspondant à lʼévolution libre est périodique en temps. Ce résultat sʼapplique à des systèmes dʼéquations de Schrödinger ou des ondes. Utilisant la transformée de Kannai, on en déduit quʼun système en cascade dʼéquations de la chaleur est contrôlable à zéro en dimension un, même si les supports du contrôle et du couplage ne sʼintersectent pas.
We consider a cascade system of two conservative equations and prove the controllability of the full system when each equation is controllable, provided that the unitary group corresponding to the free evolution is time-periodic. Applications to systems of Schrödinger (resp. wave) equations are given. With the aid of Kannai transform we infer that a one-dimensional system of heat equations is null controllable even if the supports of the control function and of the coupling term do not intersect.
Accepté le :
Publié le :
Lionel Rosier 1 ; Luz de Teresa 2
@article{CRMATH_2011__349_5-6_291_0, author = {Lionel Rosier and Luz de Teresa}, title = {Exact controllability of a cascade system of conservative equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {291--296}, publisher = {Elsevier}, volume = {349}, number = {5-6}, year = {2011}, doi = {10.1016/j.crma.2011.01.014}, language = {en}, }
Lionel Rosier; Luz de Teresa. Exact controllability of a cascade system of conservative equations. Comptes Rendus. Mathématique, Volume 349 (2011) no. 5-6, pp. 291-296. doi : 10.1016/j.crma.2011.01.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.01.014/
[1] F. Alabau-Boussouira, M. Léautaud, Indirect controllability of locally coupled systems under geometric conditions, C. R. Acad. Sci. Paris, Ser. I (2011), in press.
[2] Null-controllability of some reaction–diffusion systems with one control force, J. Math. Anal. Appl., Volume 320 (2006) no. 2, pp. 928-943
[3] Null controllability of a parabolic system with a cubic coupling term, SIAM J. Control Optim., Volume 48 (2010) no. 8, pp. 5629-5653
[4] Insensitizing controls for the 1-D wave equation, SIAM J. Control Optim., Volume 45 (2006) no. 5, pp. 1758-1768
[5] A systematic method for building smooth controls for smooth data, Discrete Contin. Dynam. Systems Ser. B, Volume 14 (2010), pp. 1375-1401
[6] Controllability results for cascade systems of m coupled parabolic PDEs by one control force, Port. Math., Volume 67 (2010) no. 1, pp. 91-113
[7] Unique continuation principle for systems of parabolic equations, ESAIM: Control Optim. Calc. Var., Volume 16 (2010) no. 2, pp. 247-274
[8] The control transmutation and the cost of fast controls, SIAM J. Control Optim., Volume 45 (2006) no. 2, pp. 762-772
[9] Control and stabilization of the nonlinear Schrödinger equation on rectangles, M3AS: Math. Models Methods Appl. Sci., Volume 20 (2010) no. 12, pp. 2293-2347
[10] Locally distributed desensitizing controls for the wave equation, C. R. Acad. Sci. Paris, Ser. I, Volume 346 (2008) no. 7–8, pp. 407-412
Cité par Sources :
Commentaires - Politique