Comptes Rendus
Partial Differential Equations/Numerical Analysis
High order asymptotic-preserving schemes for the Boltzmann equation
[Schémas dʼordre élévé et préservant lʼasymptotique pour lʼéquation de Boltzmann]
Comptes Rendus. Mathématique, Volume 350 (2012) no. 9-10, pp. 481-486.

Dans cette Note nous discutons la construction de schémas dʼordre élevé pour lʼéquation de Boltzmann qui préservent la limite asymptotique. Les méthodes sont basées sur lʼutilisation de schémas de Runge–Kutta explicites–implicites combinées avec une technique de pénalisation introduit récemment par Filbet et Jin (2010) [6].

In this Note we discuss the construction of high order asymptotic preserving numerical schemes for the Boltzmann equation. The methods are based on the use of Implicit–Explicit (IMEX) Runge–Kutta methods combined with a penalization technique recently introduced in Filbet and Jin (2010) [6].

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2012.05.010

Giacomo Dimarco 1 ; Lorenzo Pareschi 2

1 Université de Toulouse, UPS, INSA, UT1, UTM, CNRS, UMR 5219, institut de mathématiques de Toulouse, 31062 Toulouse, France
2 Mathematics Department, University of Ferrara and CMCS, Ferrara, Italy
@article{CRMATH_2012__350_9-10_481_0,
     author = {Giacomo Dimarco and Lorenzo Pareschi},
     title = {High order asymptotic-preserving schemes for the {Boltzmann} equation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {481--486},
     publisher = {Elsevier},
     volume = {350},
     number = {9-10},
     year = {2012},
     doi = {10.1016/j.crma.2012.05.010},
     language = {en},
}
TY  - JOUR
AU  - Giacomo Dimarco
AU  - Lorenzo Pareschi
TI  - High order asymptotic-preserving schemes for the Boltzmann equation
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 481
EP  - 486
VL  - 350
IS  - 9-10
PB  - Elsevier
DO  - 10.1016/j.crma.2012.05.010
LA  - en
ID  - CRMATH_2012__350_9-10_481_0
ER  - 
%0 Journal Article
%A Giacomo Dimarco
%A Lorenzo Pareschi
%T High order asymptotic-preserving schemes for the Boltzmann equation
%J Comptes Rendus. Mathématique
%D 2012
%P 481-486
%V 350
%N 9-10
%I Elsevier
%R 10.1016/j.crma.2012.05.010
%G en
%F CRMATH_2012__350_9-10_481_0
Giacomo Dimarco; Lorenzo Pareschi. High order asymptotic-preserving schemes for the Boltzmann equation. Comptes Rendus. Mathématique, Volume 350 (2012) no. 9-10, pp. 481-486. doi : 10.1016/j.crma.2012.05.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.05.010/

[1] M. Bennoune; M. Lemou; L. Mieussens Uniformly stable numerical schemes for the Boltzmann equation preserving the compressible Navier–Stokes asymptotics, J. Comp. Phys., Volume 227 (2008), pp. 3781-3803

[2] S. Boscarino; G. Russo On a class of uniformly accurate IMEX Runge–Kutta schemes and applications to hyperbolic systems with relaxation, SIAM J. Sci. Comp., Volume 31 (2009), pp. 1926-1945

[3] S. Boscarino, L. Pareschi, G. Russo, Implicit–Explicit Runge–Kutta schemes for hyperbolic systems and kinetic equations in the diffusion limit, SIAM J. Sci. Comp., in press.

[4] G. Dimarco; L. Pareschi Exponential Runge–Kutta methods for stiff kinetic equations, SIAM J. Num. Anal., Volume 49 (2011), pp. 2057-2077

[5] G. Dimarco; L. Pareschi Asymptotic-preserving IMEX Runge–Kutta methods for nonlinear kinetic equations, 2012 (preprint) | arXiv

[6] F. Filbet; S. Jin A class of asymptotic preserving schemes for kinetic equations and related problems with stiff sources, J. Comp. Phys., Volume 229 (2010), pp. 7625-7648

[7] E. Gabetta; L. Pareschi; G. Toscani Relaxation schemes for nonlinear kinetic equations, SIAM J. Numer. Anal., Volume 34 (1997), pp. 2168-2194

[8] S. Jin Efficient Asymptotic-Preserving (AP) schemes for some multiscale kinetic equations, SIAM J. Sci. Comput., Volume 21 (1999), pp. 441-454

[9] M. Lemou Relaxed micro–macro schemes for kinetic equations, C. R. Acad. Sci. Paris, Ser. I, Volume 348 (2010), pp. 455-460

[10] C. Mouhot; L. Pareschi Fast algorithms for computing the Boltzmann collision operator, Math. Comp., Volume 75 (2006), pp. 1833-1852

[11] L. Pareschi; G. Russo Implicit–Explicit Runge–Kutta methods and applications to hyperbolic systems with relaxation, J. Sci. Comput., Volume 25 (2005), pp. 129-155

  • Wei Chen; Kailiang Wu; Tao Xiong, 2023 | DOI:10.2139/ssrn.4353563
  • Wei Chen; Kailiang Wu; Tao Xiong High order asymptotic preserving finite difference WENO schemes with constrained transport for MHD equations in all sonic Mach numbers, Journal of Computational Physics, Volume 488 (2023), p. 112240 | DOI:10.1016/j.jcp.2023.112240
  • Emil Løvbak; Giovanni Samaey Accelerated Simulation of Boltzmann-BGK Equations near the Diffusive Limit with Asymptotic-Preserving Multilevel Monte Carlo, SIAM Journal on Scientific Computing, Volume 45 (2023) no. 4, p. A1862 | DOI:10.1137/22m1498498
  • Marzia Bisi; Walter Boscheri; Giacomo Dimarco; Maria Groppi; Giorgio Martalò A new mixed Boltzmann-BGK model for mixtures solved with an IMEX finite volume scheme on unstructured meshes, Applied Mathematics and Computation, Volume 433 (2022), p. 127416 | DOI:10.1016/j.amc.2022.127416
  • Fei Fei; Patrick Jenny A high-order unified stochastic particle method based on the Bhatnagar-Gross-Krook model for multi-scale gas flows, Computer Physics Communications, Volume 274 (2022), p. 108303 | DOI:10.1016/j.cpc.2022.108303
  • Walter Boscheri; Giacomo Dimarco High order modal Discontinuous Galerkin Implicit–Explicit Runge Kutta and Linear Multistep schemes for the Boltzmann model on general polygonal meshes, Computers Fluids, Volume 233 (2022), p. 105224 | DOI:10.1016/j.compfluid.2021.105224
  • Shi Chen; Qin Li; Jianfeng Lu; Stephen J. Wright Manifold Learning and Nonlinear Homogenization, Multiscale Modeling Simulation, Volume 20 (2022) no. 3, p. 1093 | DOI:10.1137/20m1377771
  • Bert Mortier; Martine Baelmans; Giovanni Samaey A Kinetic-Diffusion Asymptotic-Preserving Monte Carlo Algorithm for the Boltzmann-BGK Model in the Diffusive Scaling, SIAM Journal on Scientific Computing, Volume 44 (2022) no. 2, p. A720 | DOI:10.1137/20m1381526
  • Walter Boscheri; Giacomo Dimarco; Maurizio Tavelli An efficient second order all Mach finite volume solver for the compressible Navier–Stokes equations, Computer Methods in Applied Mechanics and Engineering, Volume 374 (2021), p. 113602 | DOI:10.1016/j.cma.2020.113602
  • Walter Boscheri; Giacomo Dimarco High order finite volume schemes with IMEX time stepping for the Boltzmann model on unstructured meshes, Computer Methods in Applied Mechanics and Engineering, Volume 387 (2021), p. 114180 | DOI:10.1016/j.cma.2021.114180
  • Claudia Negulescu Mathematical Study of a Lagrange-Multiplier Technique for Stiff Transport Problems, Multiscale Modeling Simulation, Volume 19 (2021) no. 2, p. 802 | DOI:10.1137/20m1333717
  • Emil Løvbak; Giovanni Samaey; Stefan Vandewalle A multilevel Monte Carlo method for asymptotic-preserving particle schemes in the diffusive limit, Numerische Mathematik, Volume 148 (2021) no. 1, p. 141 | DOI:10.1007/s00211-021-01201-y
  • Walter Boscheri; Giacomo Dimarco; Raphaël Loubère; Maurizio Tavelli; Marie-Hélène Vignal A second order all Mach number IMEX finite volume solver for the three dimensional Euler equations, Journal of Computational Physics, Volume 415 (2020), p. 109486 | DOI:10.1016/j.jcp.2020.109486
  • Walter Boscheri; Giacomo Dimarco High order central WENO-Implicit-Explicit Runge Kutta schemes for the BGK model on general polygonal meshes, Journal of Computational Physics, Volume 422 (2020), p. 109766 | DOI:10.1016/j.jcp.2020.109766
  • Emil Løvbak; Giovanni Samaey; Stefan Vandewalle A Multilevel Monte Carlo Asymptotic-Preserving Particle Method for Kinetic Equations in the Diffusion Limit, Monte Carlo and Quasi-Monte Carlo Methods, Volume 324 (2020), p. 383 | DOI:10.1007/978-3-030-43465-6_19
  • Giacomo Dimarco; Raphaël Loubère; Jacek Narski; Thomas Rey An efficient numerical method for solving the Boltzmann equation in multidimensions, Journal of Computational Physics, Volume 353 (2018), p. 46 | DOI:10.1016/j.jcp.2017.10.010
  • Giacomo Dimarco; Raphaël Loubère; Victor Michel-Dansac; Marie-Hélène Vignal Second-order implicit-explicit total variation diminishing schemes for the Euler system in the low Mach regime, Journal of Computational Physics, Volume 372 (2018), p. 178 | DOI:10.1016/j.jcp.2018.06.022
  • G. Dimarco; L. Pareschi; G. Samaey Asymptotic-Preserving Monte Carlo Methods for Transport Equations in the Diffusive Limit, SIAM Journal on Scientific Computing, Volume 40 (2018) no. 1, p. A504 | DOI:10.1137/17m1140741
  • Bertram Düring; Ansgar Jüngel; Lara Trussardi A kinetic equation for economic value estimation with irrationality and herding, Kinetic Related Models, Volume 10 (2017) no. 1, p. 239 | DOI:10.3934/krm.2017010
  • Giacomo Dimarco; Lorenzo Pareschi Implicit-Explicit Linear Multistep Methods for Stiff Kinetic Equations, SIAM Journal on Numerical Analysis, Volume 55 (2017) no. 2, p. 664 | DOI:10.1137/16m1063824
  • G. Dimarco; Q. Li; L. Pareschi; B. Yan Numerical methods for plasma physics in collisional regimes, Journal of Plasma Physics, Volume 81 (2015) no. 1 | DOI:10.1017/s0022377814000762
  • Jingwei Hu; Qin Li; Lorenzo Pareschi Asymptotic-Preserving Exponential Methods for the Quantum Boltzmann Equation with High-Order Accuracy, Journal of Scientific Computing, Volume 62 (2015) no. 2, p. 555 | DOI:10.1007/s10915-014-9869-2
  • G. Dimarco; L. Pareschi Numerical methods for kinetic equations, Acta Numerica, Volume 23 (2014), p. 369 | DOI:10.1017/s0962492914000063
  • Giacomo Dimarco; Lorenzo Pareschi Asymptotic Preserving Implicit-Explicit Runge–Kutta Methods for Nonlinear Kinetic Equations, SIAM Journal on Numerical Analysis, Volume 51 (2013) no. 2, p. 1064 | DOI:10.1137/12087606x
  • Bokai Yan; Shi Jin A Successive Penalty-Based Asymptotic-Preserving Scheme for Kinetic Equations, SIAM Journal on Scientific Computing, Volume 35 (2013) no. 1, p. A150 | DOI:10.1137/110857982
  • Shi Jin; Li Wang Asymptotic-Preserving Numerical Schemes for the Semiconductor Boltzmann Equation Efficient in the High Field Regime, SIAM Journal on Scientific Computing, Volume 35 (2013) no. 3, p. B799 | DOI:10.1137/120886534

Cité par 26 documents. Sources : Crossref

Commentaires - Politique