[Schémas dʼordre élévé et préservant lʼasymptotique pour lʼéquation de Boltzmann]
Dans cette Note nous discutons la construction de schémas dʼordre élevé pour lʼéquation de Boltzmann qui préservent la limite asymptotique. Les méthodes sont basées sur lʼutilisation de schémas de Runge–Kutta explicites–implicites combinées avec une technique de pénalisation introduit récemment par Filbet et Jin (2010) [6].
In this Note we discuss the construction of high order asymptotic preserving numerical schemes for the Boltzmann equation. The methods are based on the use of Implicit–Explicit (IMEX) Runge–Kutta methods combined with a penalization technique recently introduced in Filbet and Jin (2010) [6].
Accepté le :
Publié le :
Giacomo Dimarco 1 ; Lorenzo Pareschi 2
@article{CRMATH_2012__350_9-10_481_0, author = {Giacomo Dimarco and Lorenzo Pareschi}, title = {High order asymptotic-preserving schemes for the {Boltzmann} equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {481--486}, publisher = {Elsevier}, volume = {350}, number = {9-10}, year = {2012}, doi = {10.1016/j.crma.2012.05.010}, language = {en}, }
Giacomo Dimarco; Lorenzo Pareschi. High order asymptotic-preserving schemes for the Boltzmann equation. Comptes Rendus. Mathématique, Volume 350 (2012) no. 9-10, pp. 481-486. doi : 10.1016/j.crma.2012.05.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.05.010/
[1] Uniformly stable numerical schemes for the Boltzmann equation preserving the compressible Navier–Stokes asymptotics, J. Comp. Phys., Volume 227 (2008), pp. 3781-3803
[2] On a class of uniformly accurate IMEX Runge–Kutta schemes and applications to hyperbolic systems with relaxation, SIAM J. Sci. Comp., Volume 31 (2009), pp. 1926-1945
[3] S. Boscarino, L. Pareschi, G. Russo, Implicit–Explicit Runge–Kutta schemes for hyperbolic systems and kinetic equations in the diffusion limit, SIAM J. Sci. Comp., in press.
[4] Exponential Runge–Kutta methods for stiff kinetic equations, SIAM J. Num. Anal., Volume 49 (2011), pp. 2057-2077
[5] Asymptotic-preserving IMEX Runge–Kutta methods for nonlinear kinetic equations, 2012 (preprint) | arXiv
[6] A class of asymptotic preserving schemes for kinetic equations and related problems with stiff sources, J. Comp. Phys., Volume 229 (2010), pp. 7625-7648
[7] Relaxation schemes for nonlinear kinetic equations, SIAM J. Numer. Anal., Volume 34 (1997), pp. 2168-2194
[8] Efficient Asymptotic-Preserving (AP) schemes for some multiscale kinetic equations, SIAM J. Sci. Comput., Volume 21 (1999), pp. 441-454
[9] Relaxed micro–macro schemes for kinetic equations, C. R. Acad. Sci. Paris, Ser. I, Volume 348 (2010), pp. 455-460
[10] Fast algorithms for computing the Boltzmann collision operator, Math. Comp., Volume 75 (2006), pp. 1833-1852
[11] Implicit–Explicit Runge–Kutta methods and applications to hyperbolic systems with relaxation, J. Sci. Comput., Volume 25 (2005), pp. 129-155
Cité par Sources :
Commentaires - Politique