[Schémas dʼordre élévé et préservant lʼasymptotique pour lʼéquation de Boltzmann]
Dans cette Note nous discutons la construction de schémas dʼordre élevé pour lʼéquation de Boltzmann qui préservent la limite asymptotique. Les méthodes sont basées sur lʼutilisation de schémas de Runge–Kutta explicites–implicites combinées avec une technique de pénalisation introduit récemment par Filbet et Jin (2010) [6].
In this Note we discuss the construction of high order asymptotic preserving numerical schemes for the Boltzmann equation. The methods are based on the use of Implicit–Explicit (IMEX) Runge–Kutta methods combined with a penalization technique recently introduced in Filbet and Jin (2010) [6].
Accepté le :
Publié le :
Giacomo Dimarco 1 ; Lorenzo Pareschi 2
@article{CRMATH_2012__350_9-10_481_0, author = {Giacomo Dimarco and Lorenzo Pareschi}, title = {High order asymptotic-preserving schemes for the {Boltzmann} equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {481--486}, publisher = {Elsevier}, volume = {350}, number = {9-10}, year = {2012}, doi = {10.1016/j.crma.2012.05.010}, language = {en}, }
Giacomo Dimarco; Lorenzo Pareschi. High order asymptotic-preserving schemes for the Boltzmann equation. Comptes Rendus. Mathématique, Volume 350 (2012) no. 9-10, pp. 481-486. doi : 10.1016/j.crma.2012.05.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.05.010/
[1] Uniformly stable numerical schemes for the Boltzmann equation preserving the compressible Navier–Stokes asymptotics, J. Comp. Phys., Volume 227 (2008), pp. 3781-3803
[2] On a class of uniformly accurate IMEX Runge–Kutta schemes and applications to hyperbolic systems with relaxation, SIAM J. Sci. Comp., Volume 31 (2009), pp. 1926-1945
[3] S. Boscarino, L. Pareschi, G. Russo, Implicit–Explicit Runge–Kutta schemes for hyperbolic systems and kinetic equations in the diffusion limit, SIAM J. Sci. Comp., in press.
[4] Exponential Runge–Kutta methods for stiff kinetic equations, SIAM J. Num. Anal., Volume 49 (2011), pp. 2057-2077
[5] Asymptotic-preserving IMEX Runge–Kutta methods for nonlinear kinetic equations, 2012 (preprint) | arXiv
[6] A class of asymptotic preserving schemes for kinetic equations and related problems with stiff sources, J. Comp. Phys., Volume 229 (2010), pp. 7625-7648
[7] Relaxation schemes for nonlinear kinetic equations, SIAM J. Numer. Anal., Volume 34 (1997), pp. 2168-2194
[8] Efficient Asymptotic-Preserving (AP) schemes for some multiscale kinetic equations, SIAM J. Sci. Comput., Volume 21 (1999), pp. 441-454
[9] Relaxed micro–macro schemes for kinetic equations, C. R. Acad. Sci. Paris, Ser. I, Volume 348 (2010), pp. 455-460
[10] Fast algorithms for computing the Boltzmann collision operator, Math. Comp., Volume 75 (2006), pp. 1833-1852
[11] Implicit–Explicit Runge–Kutta methods and applications to hyperbolic systems with relaxation, J. Sci. Comput., Volume 25 (2005), pp. 129-155
- DOI:10.2139/ssrn.4353563 , 2023 |
- High order asymptotic preserving finite difference WENO schemes with constrained transport for MHD equations in all sonic Mach numbers, Journal of Computational Physics, Volume 488 (2023), p. 112240 | DOI:10.1016/j.jcp.2023.112240
- Accelerated Simulation of Boltzmann-BGK Equations near the Diffusive Limit with Asymptotic-Preserving Multilevel Monte Carlo, SIAM Journal on Scientific Computing, Volume 45 (2023) no. 4, p. A1862 | DOI:10.1137/22m1498498
- A new mixed Boltzmann-BGK model for mixtures solved with an IMEX finite volume scheme on unstructured meshes, Applied Mathematics and Computation, Volume 433 (2022), p. 127416 | DOI:10.1016/j.amc.2022.127416
- A high-order unified stochastic particle method based on the Bhatnagar-Gross-Krook model for multi-scale gas flows, Computer Physics Communications, Volume 274 (2022), p. 108303 | DOI:10.1016/j.cpc.2022.108303
- High order modal Discontinuous Galerkin Implicit–Explicit Runge Kutta and Linear Multistep schemes for the Boltzmann model on general polygonal meshes, Computers Fluids, Volume 233 (2022), p. 105224 | DOI:10.1016/j.compfluid.2021.105224
- Manifold Learning and Nonlinear Homogenization, Multiscale Modeling Simulation, Volume 20 (2022) no. 3, p. 1093 | DOI:10.1137/20m1377771
- A Kinetic-Diffusion Asymptotic-Preserving Monte Carlo Algorithm for the Boltzmann-BGK Model in the Diffusive Scaling, SIAM Journal on Scientific Computing, Volume 44 (2022) no. 2, p. A720 | DOI:10.1137/20m1381526
- An efficient second order all Mach finite volume solver for the compressible Navier–Stokes equations, Computer Methods in Applied Mechanics and Engineering, Volume 374 (2021), p. 113602 | DOI:10.1016/j.cma.2020.113602
- High order finite volume schemes with IMEX time stepping for the Boltzmann model on unstructured meshes, Computer Methods in Applied Mechanics and Engineering, Volume 387 (2021), p. 114180 | DOI:10.1016/j.cma.2021.114180
- Mathematical Study of a Lagrange-Multiplier Technique for Stiff Transport Problems, Multiscale Modeling Simulation, Volume 19 (2021) no. 2, p. 802 | DOI:10.1137/20m1333717
- A multilevel Monte Carlo method for asymptotic-preserving particle schemes in the diffusive limit, Numerische Mathematik, Volume 148 (2021) no. 1, p. 141 | DOI:10.1007/s00211-021-01201-y
- A second order all Mach number IMEX finite volume solver for the three dimensional Euler equations, Journal of Computational Physics, Volume 415 (2020), p. 109486 | DOI:10.1016/j.jcp.2020.109486
- High order central WENO-Implicit-Explicit Runge Kutta schemes for the BGK model on general polygonal meshes, Journal of Computational Physics, Volume 422 (2020), p. 109766 | DOI:10.1016/j.jcp.2020.109766
- A Multilevel Monte Carlo Asymptotic-Preserving Particle Method for Kinetic Equations in the Diffusion Limit, Monte Carlo and Quasi-Monte Carlo Methods, Volume 324 (2020), p. 383 | DOI:10.1007/978-3-030-43465-6_19
- An efficient numerical method for solving the Boltzmann equation in multidimensions, Journal of Computational Physics, Volume 353 (2018), p. 46 | DOI:10.1016/j.jcp.2017.10.010
- Second-order implicit-explicit total variation diminishing schemes for the Euler system in the low Mach regime, Journal of Computational Physics, Volume 372 (2018), p. 178 | DOI:10.1016/j.jcp.2018.06.022
- Asymptotic-Preserving Monte Carlo Methods for Transport Equations in the Diffusive Limit, SIAM Journal on Scientific Computing, Volume 40 (2018) no. 1, p. A504 | DOI:10.1137/17m1140741
- A kinetic equation for economic value estimation with irrationality and herding, Kinetic Related Models, Volume 10 (2017) no. 1, p. 239 | DOI:10.3934/krm.2017010
- Implicit-Explicit Linear Multistep Methods for Stiff Kinetic Equations, SIAM Journal on Numerical Analysis, Volume 55 (2017) no. 2, p. 664 | DOI:10.1137/16m1063824
- Numerical methods for plasma physics in collisional regimes, Journal of Plasma Physics, Volume 81 (2015) no. 1 | DOI:10.1017/s0022377814000762
- Asymptotic-Preserving Exponential Methods for the Quantum Boltzmann Equation with High-Order Accuracy, Journal of Scientific Computing, Volume 62 (2015) no. 2, p. 555 | DOI:10.1007/s10915-014-9869-2
- Numerical methods for kinetic equations, Acta Numerica, Volume 23 (2014), p. 369 | DOI:10.1017/s0962492914000063
- Asymptotic Preserving Implicit-Explicit Runge–Kutta Methods for Nonlinear Kinetic Equations, SIAM Journal on Numerical Analysis, Volume 51 (2013) no. 2, p. 1064 | DOI:10.1137/12087606x
- A Successive Penalty-Based Asymptotic-Preserving Scheme for Kinetic Equations, SIAM Journal on Scientific Computing, Volume 35 (2013) no. 1, p. A150 | DOI:10.1137/110857982
- Asymptotic-Preserving Numerical Schemes for the Semiconductor Boltzmann Equation Efficient in the High Field Regime, SIAM Journal on Scientific Computing, Volume 35 (2013) no. 3, p. B799 | DOI:10.1137/120886534
Cité par 26 documents. Sources : Crossref
Commentaires - Politique