[Une méthode constructive pour la stabilisation de lʼéquation des ondes avec un amortissement localisé de type Kelvin–Voigt]
On considère lʼéquation des ondes avec un amortissement de type Kelvin–Voigt dans un domaine borné. Lʼamortissement est localisé dans un sous-ensemble ouvert convenablement choisi dans le domaine en question. Le résultat de stabilité exponentielle proposé par Liu et Rao pour ce système suppose que lʼamortissement est localisé dans un voisinage de tout le bord, et le coefficient de lʼamortissement est continûment dérivable avec un laplacien borné. Nous proposons une solution nouvelle au problème de la stabilité exponentielle basée sur lʼintroduction dʼune nouvelle variable et une méthode constructive de type domaine des fréquences. Les caractéristiques principales de notre approche sont : (i) il nʼest pas nécessaire que la région où lʼamortissement est localisé soit un voisinage de tout le bord ; (ii) le coefficient dʼamortissement ainsi que son gradient sont supposés seulement bornés et mesurables ; (iii) lʼintroduction dʼune nouvelle variable. Ces éléments nous permettent dʼaméliorer la régularité du coefficient dʼamortissement, et plus particulièrement la région du contrôle dissipatif. De plus, si on combine la nouvelle méthode avec un résultat récent de Borichev et Tomilov sur la décroissance polynômiale de semi-groupes, cela nous permet de démontrer une estimation de décroissance polynômiale de lʼénergie lorsque le coefficient dʼamortissement est seulement borné et mesurable.
We consider the wave equation with Kelvin–Voigt damping in a bounded domain. The damping is localized in a suitable open subset of the domain under consideration. The exponential stability result proposed by Liu and Rao for that system assumes that the damping is localized in a neighborhood of the whole boundary, and the damping coefficient is continuously differentiable with a bounded Laplacian. We propose a new solution to the exponential stability problem based on the introduction of a new variable, and a constructive frequency domain approach. The main features of our method are: (i) the damping region need not be a neighborhood of the whole boundary; (ii) the damping coefficient is assumed to be bounded measurable with bounded measurable gradient only; (iii) the introduction of a new variable. These features enable us to improve on the damping coefficient smoothness and more especially on the feedback control region. Further, when combined with a recent result of Borichev and Tomilov on the polynomial decay of bounded semigroups, the new method enables us to prove a polynomial decay estimate of the energy when the damping coefficient is bounded measurable only.
Accepté le :
Publié le :
Louis Tebou 1
@article{CRMATH_2012__350_11-12_603_0, author = {Louis Tebou}, title = {A constructive method for the stabilization of the wave equation with localized {Kelvin{\textendash}Voigt} damping}, journal = {Comptes Rendus. Math\'ematique}, pages = {603--608}, publisher = {Elsevier}, volume = {350}, number = {11-12}, year = {2012}, doi = {10.1016/j.crma.2012.06.005}, language = {en}, }
TY - JOUR AU - Louis Tebou TI - A constructive method for the stabilization of the wave equation with localized Kelvin–Voigt damping JO - Comptes Rendus. Mathématique PY - 2012 SP - 603 EP - 608 VL - 350 IS - 11-12 PB - Elsevier DO - 10.1016/j.crma.2012.06.005 LA - en ID - CRMATH_2012__350_11-12_603_0 ER -
Louis Tebou. A constructive method for the stabilization of the wave equation with localized Kelvin–Voigt damping. Comptes Rendus. Mathématique, Volume 350 (2012) no. 11-12, pp. 603-608. doi : 10.1016/j.crma.2012.06.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.06.005/
[1] Sharp sufficient conditions for the observation, control and stabilization from the boundary, SIAM J. Control Optim., Volume 30 (1992), pp. 1024-1065
[2] Optimal polynomial decay of functions and operator semigroups, Math. Ann., Volume 347 (2010), pp. 455-478
[3] Exponential decay of energy of evolution equations with locally distributed damping, SIAM J. Appl. Math., Volume 51 (1991), pp. 266-301
[4] Asymptotic behaviour of solutions of evolution equations (M.G. Crandall, ed.), Nonlinear Evolution Equations, Academic Press, New York, 1978, pp. 103-123
[5] Longtime behavior of the hyperbolic equations with an arbitrary internal damping, Z. Angew. Math. Phys., Volume 62 (2011), pp. 667-680
[6] Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps, Port. Math., Volume 46 (1989), pp. 245-258
[7] Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces, Ann. Differential Equations, Volume 1 (1985), pp. 43-56
[8] Exact Controllability and Stabilization. The Multiplier Method, RAM, Masson & John Wiley, Paris, 1994
[9] Energy decay rates for the semilinear wave equation with nonlinear localized damping and source terms, Nonlinear Anal., Volume 64 (2006), pp. 1757-1797
[10] Equation des ondes amorties, Kaciveli, 1993 (Math. Phys. Stud.), Volume vol. 19, Kluwer Acad. Publ., Dordrecht (1996), pp. 73-109
[11] Contrôlabilité exacte, perturbations et stabilisation des systèmes distribués, vol. 2, RMA, Masson, Paris, 1988
[12] Locally distributed control and damping for the conservative systems, SIAM J. Control Optim., Volume 35 (1997), pp. 1574-1590
[13] Exponential decay of energy of the Euler–Bernoulli beam with locally distributed Kelvin–Voigt damping, SIAM J. Control Optim., Volume 36 (1998) no. 3, pp. 1086-1098
[14] Stabilité exponentielle des équations des ondes avec amortissement local de Kelvin–Voigt, C. R. Acad. Sci. Paris, Ser. I, Volume 339 (2004), pp. 769-774
[15] Exponential stability for the wave equations with local Kelvin–Voigt damping, Z. Angew. Math. Phys., Volume 57 (2006), pp. 419-432
[16] Decay of solutions of the wave equation with a local nonlinear dissipation, Math. Ann., Volume 305 (1996), pp. 403-417
[17] On the spectrum of
[18] Exponential decay of solutions to hyperbolic equations in bounded domains, Indiana Univ. Math. J., Volume 24 (1974), pp. 79-86
[19] Stabilization of the wave equation with localized nonlinear damping, J. Differential Equations, Volume 145 (1998), pp. 502-524
[20] Well-posedness and energy decay estimates for the damped wave equation with
[21] A Carleman estimates based method for the stabilization of some locally damped semilinear hyperbolic equations, ESAIM Control Optim. Calc. Var., Volume 14 (2008), pp. 561-574
[22] Exponential decay for the semilinear wave equation with locally distributed damping, Comm. Partial Differential Equations, Volume 15 (1990), pp. 205-235
- Energy decay for coupled wave-plate system with one Kelvin-Voigt or structural damping, Applicable Analysis (2025), p. 1 | DOI:10.1080/00036811.2025.2481472
- Uniform Stabilization for the Semi-linear Wave Equation with Nonlinear Kelvin–Voigt Damping, Applied Mathematics Optimization, Volume 90 (2024) no. 2 | DOI:10.1007/s00245-024-10186-7
- Stabilization of a locally transmission problems of two strongly-weakly coupled wave systems, Asymptotic Analysis (2024), p. 1 | DOI:10.3233/asy-241939
- Energy decay rate of the wave–wave transmission system with Kelvin–Voigt damping, Mathematical Methods in the Applied Sciences, Volume 47 (2024) no. 11, p. 8721 | DOI:10.1002/mma.10041
- Energy decay for a coupled wave system with one local Kelvin–Voigt damping, Mathematische Nachrichten, Volume 297 (2024) no. 4, p. 1310 | DOI:10.1002/mana.202300112
- Well-posedness and stability for a viscoelastic Petrovsky equation with a localized nonlinear damping, SeMA Journal, Volume 81 (2024) no. 2, p. 307 | DOI:10.1007/s40324-023-00325-5
- Stability of coupled wave equations with variable coefficients, localised Kelvin–Voigt damping and time delay, Semigroup Forum, Volume 109 (2024) no. 2, p. 390 | DOI:10.1007/s00233-024-10453-7
- Polynomial stability of one‐dimensional wave equation with local degenerate Kelvin–Voigt damping and discontinuous coefficients, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Volume 104 (2024) no. 3 | DOI:10.1002/zamm.202200343
- Stability of the wave equation with localized Kelvin–Voigt damping and dynamic Wentzell boundary conditions with delay, Mathematical Methods in the Applied Sciences, Volume 46 (2023) no. 4, p. 3649 | DOI:10.1002/mma.8714
- A N-dimensional elastic
viscoelastic transmission problem with Kelvin–Voigt damping and non smooth coefficient at the interface, SeMA Journal, Volume 80 (2023) no. 3, p. 425 | DOI:10.1007/s40324-022-00297-y - Global Stability Dynamics of the Quasilinear Damped Klein–Gordon Equation with Variable Coefficients, The Journal of Geometric Analysis, Volume 33 (2023) no. 4 | DOI:10.1007/s12220-022-01169-7
- Eventual differentiability of coupled wave equations with local Kelvin-Voigt damping, Discrete and Continuous Dynamical Systems - S, Volume 15 (2022) no. 6, p. 1317 | DOI:10.3934/dcdss.2022098
- Sharp Decay Estimates for Semigroups Associated with Some One-Dimensional Fluid-Structure Interactions Involving Degeneracy, SIAM Journal on Control and Optimization, Volume 60 (2022) no. 5, p. 2787 | DOI:10.1137/21m141854x
- Applications to the Fractional-Damped Wave Equation, Stabilization for Some Fractional-Evolution Systems (2022), p. 33 | DOI:10.1007/978-3-031-17343-1_3
- Stabilization for the Wave Equation with Singular Kelvin–Voigt Damping, Stabilization of Kelvin-Voigt Damped Systems, Volume 47 (2022), p. 39 | DOI:10.1007/978-3-031-12519-5_3
- Stability Results of an Elastic/Viscoelastic Transmission Problem of Locally Coupled Waves with Non Smooth Coefficients, Acta Applicandae Mathematicae, Volume 171 (2021) no. 1 | DOI:10.1007/s10440-021-00384-8
- Stability results for an elastic–viscoelastic wave equation with localized Kelvin–Voigt damping and with an internal or boundary time delay, Asymptotic Analysis, Volume 125 (2021) no. 1-2, p. 1 | DOI:10.3233/asy-201649
- Stabilization of transmission system of Kirchhoff plate and wave equations with a localized Kelvin–Voigt damping, Journal of Evolution Equations, Volume 21 (2021) no. 2, p. 2239 | DOI:10.1007/s00028-021-00682-6
- Stability of N-D transmission problem in viscoelasticity with localized Kelvin-Voigt damping under different types of geometric conditions, Mathematical Control Related Fields, Volume 11 (2021) no. 4, p. 885 | DOI:10.3934/mcrf.2020050
- Well‐posedness and stability for a Petrovsky equation with properties of nonlinear localized for strong damping, Mathematical Methods in the Applied Sciences, Volume 44 (2021) no. 5, p. 3568 | DOI:10.1002/mma.6963
- Decay rates for Kelvin-Voigt damped wave equations II: The geometric control condition, Proceedings of the American Mathematical Society, Volume 150 (2021) no. 3, p. 1021 | DOI:10.1090/proc/15493
- Stability for coupled waves with locally disturbed Kelvin–Voigt damping, Semigroup Forum, Volume 102 (2021) no. 1, p. 134 | DOI:10.1007/s00233-020-10142-1
- Stabilization for the Wave Equation with Singular Kelvin–Voigt Damping, Archive for Rational Mechanics and Analysis, Volume 236 (2020) no. 2, p. 577 | DOI:10.1007/s00205-019-01476-4
- Fractional-feedback stabilization for a class of evolution systems, Journal of Differential Equations, Volume 268 (2020) no. 10, p. 5751 | DOI:10.1016/j.jde.2019.11.022
- A transmission problem of a system of weakly coupled wave equations with Kelvin–Voigt dampings and non-smooth coefficient at the interface, SeMA Journal, Volume 77 (2020) no. 3, p. 305 | DOI:10.1007/s40324-020-00218-x
- Stabilization of the wave equation with a localized nonlinear strong damping, Zeitschrift für angewandte Mathematik und Physik, Volume 71 (2020) no. 1 | DOI:10.1007/s00033-019-1240-x
- Frictional versus Kelvin‐Voigt damping in a transmission problem, Mathematical Methods in the Applied Sciences, Volume 40 (2017) no. 18, p. 7026 | DOI:10.1002/mma.4510
- Stabilization of some elastodynamic systems with localized Kelvin-Voigt damping, Discrete and Continuous Dynamical Systems, Volume 36 (2016) no. 12, p. 7117 | DOI:10.3934/dcds.2016110
Cité par 28 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier