Comptes Rendus
Partial Differential Equations
A direct method for the stabilization of some locally damped semilinear wave equations
[Une méthode directe pour la stabilisation de quelques équations des ondes semi-linéaires localement amorties]
Comptes Rendus. Mathématique, Volume 342 (2006) no. 11, pp. 859-864.

Dans un premier temps, nous considérons une équation des ondes semi-linéaire avec un amortissement localement distribué dans un domaine borné. A l'aide de l'inégalité de Carleman, nous construisons une preuve élémentaire et directe de la décroissance exponentielle de l'énergie de ce système. Par la suite, nous appliquons la même technique pour étudier la stabilisation du même type d'équation dans l'espace tout entier. Nos démontrations sont constructives, et beaucoup plus simples que celles existantes.

First, we consider a semilinear wave equation with a locally distributed damping in a bounded domain. Using the Carleman estimate, we devise an elementary proof of the exponential decay of the energy of this system. Afterwards we apply the same technique to the stabilization of the same type of equation in the whole space. Our proofs are constructive, and much simpler than those found in the literature.

Accepté le :
Publié le :
DOI : 10.1016/j.crma.2006.04.010

Louis Tcheugoué Tébou 1

1 Department of Mathematics, Florida International University, Miami, FL 33199, USA
@article{CRMATH_2006__342_11_859_0,
     author = {Louis Tcheugou\'e T\'ebou},
     title = {A direct method for the stabilization of some locally damped semilinear wave equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {859--864},
     publisher = {Elsevier},
     volume = {342},
     number = {11},
     year = {2006},
     doi = {10.1016/j.crma.2006.04.010},
     language = {en},
}
TY  - JOUR
AU  - Louis Tcheugoué Tébou
TI  - A direct method for the stabilization of some locally damped semilinear wave equations
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 859
EP  - 864
VL  - 342
IS  - 11
PB  - Elsevier
DO  - 10.1016/j.crma.2006.04.010
LA  - en
ID  - CRMATH_2006__342_11_859_0
ER  - 
%0 Journal Article
%A Louis Tcheugoué Tébou
%T A direct method for the stabilization of some locally damped semilinear wave equations
%J Comptes Rendus. Mathématique
%D 2006
%P 859-864
%V 342
%N 11
%I Elsevier
%R 10.1016/j.crma.2006.04.010
%G en
%F CRMATH_2006__342_11_859_0
Louis Tcheugoué Tébou. A direct method for the stabilization of some locally damped semilinear wave equations. Comptes Rendus. Mathématique, Volume 342 (2006) no. 11, pp. 859-864. doi : 10.1016/j.crma.2006.04.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.04.010/

[1] C. Bardos; G. Lebeau; J. Rauch Sharp sufficient conditions for the observation, control and stabilization from the boundary, SIAM J. Control Optim., Volume 30 (1992), pp. 1024-1065

[2] B. Dehman Stabilisation pour l'équation des ondes semi-linéaire, Asymptotic Anal., Volume 27 (2001), pp. 171-181

[3] B. Dehman; G. Lebeau; E. Zuazua Stabilization and control for the subcritical semilinear wave equation, Ann. Sci. École Norm. Sup. (4), Volume 36 (2003) no. 4, pp. 525-551

[4] T. Duyckaerts, X. Zhang, E. Zuazua, On the optimality of the observability for parabolic and hyperbolic systems with potentials, in press

[5] A. Haraux Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps, Portugal. Math., Volume 46 (1989), pp. 245-258

[6] V. Komornik Exact Controllability and Stabilization. The Multiplier Method, RAM, Masson & John Wiley, Paris, 1994

[7] J. Lagnese Control of wave processes with distributed control supported on a subregion, SIAM J. Control Optim., Volume 21 (1983), pp. 68-85

[8] I. Lasiecka; D. Tataru Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping, Differential Integral Equations, Volume 6 (1993), pp. 507-533

[9] J.L. Lions Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod–Gauthier–Villars, Paris, 1969

[10] P. Martinez, PhD Thesis, University of Strasbourg, 1998

[11] M. Nakao Global and periodic solutions for nonlinear wave equations with some localized nonlinear dissipation, J. Differential Equations, Volume 190 (2003) no. 1, pp. 81-107

[12] A. Ruiz Unique continuation for weak solutions of the wave equation plus a potential, J. Math. Pures Appl., Volume 71 (1992), pp. 455-467

[13] L.R. Tcheugoué Tébou Estimations d'énergie pour l'équation des ondes avec un amortissement nonlinéaire localisé, C. R. Acad. Paris, Ser. I, Volume 325 (1997), pp. 1175-1179

[14] L.R. Tcheugoué Tébou Stabilization of the wave equation with localized nonlinear damping, J. Differential Equations, Volume 145 (1998), pp. 502-524

[15] L.R. Tcheugoué Tébou Well-posedness and energy decay estimates for the damped wave equation with Lr localizing coefficient, Comm. Partial Differential Equations, Volume 23 (1998), pp. 1839-1855

[16] L.R. Tcheugoué Tébou, A Carleman estimate based approach for the stabilization of some locally damped semilinear wave equations, in preparation

[17] E. Zuazua Exponential decay for the semilinear wave equation with locally distributed damping, Comm. Partial Differential Equations, Volume 15 (1990), pp. 205-235

[18] E. Zuazua Exponential decay for the semilinear wave equation with localized damping in unbounded domains, J. Math. Pures Appl., Volume 15 (1990), pp. 205-235

Cité par Sources :

Commentaires - Politique