[La forme de lʼinterface SOS -dimensionnelle au-dessus dʼun mur]
Nous donnons une description complète de la forme typique de lʼinterface SOS -dimensionnelle au-dessus dʼun mur, introduite par Temperley (1952) [14]. Dans une boîte à basse température , la hauteur de la plupart des sommets se concentre au niveau , pour la plupart des valeurs de L. Pour une suite croissante de boîtes, lʼensemble de lignes de niveau de hauteur admet une limite au sense de la distance de Hausdorff ssi la partie fractionnaire de converge à une valeur non critique. La limite dʼéchelle est donnée explicitement par des boucles imbriquées, formées par des translations de formes de Wulff. Enfin, la distance entre le bord de la boîte et la ligne de niveau h a des fluctuations .
We give a full description for the shape of the classical d Solid-On-Solid model above a wall, introduced by Temperley (1952) [14]. On an box at a large inverse-temperature β the height of most sites concentrates on a single level for most values of L. For a sequence of diverging boxes the ensemble of level lines of heights has a scaling limit in Hausdorff distance iff the fractional parts of converge to a noncritical value. The scaling limit is explicitly given by nested distinct loops formed via translates of Wulff shapes. Finally, the h-level lines feature fluctuations from the side boundaries.
Accepté le :
Publié le :
Pietro Caputo 1 ; Eyal Lubetzky 2 ; Fabio Martinelli 1 ; Allan Sly 3 ; Fabio Lucio Toninelli 4
@article{CRMATH_2012__350_13-14_703_0, author = {Pietro Caputo and Eyal Lubetzky and Fabio Martinelli and Allan Sly and Fabio Lucio Toninelli}, title = {The shape of the $ (2+1)$d {SOS} surface above a wall}, journal = {Comptes Rendus. Math\'ematique}, pages = {703--706}, publisher = {Elsevier}, volume = {350}, number = {13-14}, year = {2012}, doi = {10.1016/j.crma.2012.07.006}, language = {en}, }
TY - JOUR AU - Pietro Caputo AU - Eyal Lubetzky AU - Fabio Martinelli AU - Allan Sly AU - Fabio Lucio Toninelli TI - The shape of the $ (2+1)$d SOS surface above a wall JO - Comptes Rendus. Mathématique PY - 2012 SP - 703 EP - 706 VL - 350 IS - 13-14 PB - Elsevier DO - 10.1016/j.crma.2012.07.006 LA - en ID - CRMATH_2012__350_13-14_703_0 ER -
%0 Journal Article %A Pietro Caputo %A Eyal Lubetzky %A Fabio Martinelli %A Allan Sly %A Fabio Lucio Toninelli %T The shape of the $ (2+1)$d SOS surface above a wall %J Comptes Rendus. Mathématique %D 2012 %P 703-706 %V 350 %N 13-14 %I Elsevier %R 10.1016/j.crma.2012.07.006 %G en %F CRMATH_2012__350_13-14_703_0
Pietro Caputo; Eyal Lubetzky; Fabio Martinelli; Allan Sly; Fabio Lucio Toninelli. The shape of the $ (2+1)$d SOS surface above a wall. Comptes Rendus. Mathématique, Volume 350 (2012) no. 13-14, pp. 703-706. doi : 10.1016/j.crma.2012.07.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.07.006/
[1] Cube-root boundary fluctuations for droplets in random cluster models, Comm. Math. Phys., Volume 224 (2001) no. 3, pp. 733-781
[2] Random surfaces in statistical mechanics: roughening, rounding, wetting, … , J. Stat. Phys., Volume 42 (1986) no. 5–6, pp. 743-798
[3] Dynamics of dimensional SOS surfaces above a wall: slow mixing induced by entropic repulsion, 2012 (preprint. Available at) | arXiv
[4] Brownian Gibbs property for Airy line ensembles, 2011 (preprint. Available at) | arXiv
[5] Wulff Construction. A Global Shape from Local Interaction, Transl. Math. Monogr., vol. 104, American Mathematical Society, Providence, RI, 1992
[6] Constrained Brownian motion: fluctuations away from circular and parabolic barriers, Ann. Probab., Volume 33 (2005) no. 4, pp. 1302-1325
[7] Kosterlitz–Thouless transition in the two-dimensional plane rotator and Coulomb gas, Phys. Rev. Lett., Volume 46 (1981) no. 15, pp. 1006-1009
[8] The Kosterlitz–Thouless transition in two-dimensional abelian spin systems and the Coulomb gas, Comm. Math. Phys., Volume 81 (1981) no. 4, pp. 527-602
[9] The Berežinskiĭ–Kosterlitz–Thouless transition (energy–entropy arguments and renormalization in defect gases), scaling and self-similarity in physics, Prog. Phys., Volume 7 (1983), pp. 29-138
[10] Universality of critical behaviour in a class of recurrent random walks, Probab. Theory Related Fields, Volume 130 (2004) no. 2, pp. 222-258
[11] Discrete polynuclear growth and determinantal processes, Comm. Math. Phys., Volume 242 (2003) no. 1–2, pp. 277-329
[12] Complete analyticity for 2D Ising completed, Comm. Math. Phys., Volume 170 (1995) no. 2, pp. 453-482
[13] Constrained variational problem with applications to the Ising model, J. Stat. Phys., Volume 83 (1996) no. 5–6, pp. 867-905
[14] Statistical mechanics and the partition of numbers. II. The form of crystal surfaces, Proc. Cambridge Philos. Soc., Volume 48 (1952), pp. 683-697
[15] Entropic repulsion of an interface in an external field, Probab. Theory Related Fields, Volume 129 (2004) no. 1, pp. 83-112
Cité par Sources :
☆ This work was supported by the European Research Council through the “Advanced Grant” PTRELSS 228032.
Commentaires - Politique