Comptes Rendus
Mathematical Analysis/Dynamical Systems
Sharp large deviations for some hyperbolic flows
[Larges déviations exactes pour certains flots hyperboliques]
Comptes Rendus. Mathématique, Volume 350 (2012) no. 13-14, pp. 665-669.

On justifie le principe de larges déviations exactes avec des intervalles décroissants sub-exponentiellement pour certains modèles concernant lʼapplication de Poincaré associée à une famille de Markov pour un Axiom A flot restreint à un ensemble basique qui satisfait des conditions de régularité additionnelles.

We prove a sharp large deviation principle concerning intervals shrinking with sub-exponential speed for certain models involving the Poincaré map related to a Markov family for an Axiom A flow restricted to a basic set satisfying some additional regularity assumptions.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2012.07.012

Vesselin Petkov 1 ; Luchezar Stoyanov 2

1 Université Bordeaux I, institut de mathématiques, 351, cours de la Libération, 33405 Talence, France
2 University of Western Australia, School of Mathematics and Statistics, Perth, WA 6009, Australia
@article{CRMATH_2012__350_13-14_665_0,
     author = {Vesselin Petkov and Luchezar Stoyanov},
     title = {Sharp large deviations for some hyperbolic flows},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {665--669},
     publisher = {Elsevier},
     volume = {350},
     number = {13-14},
     year = {2012},
     doi = {10.1016/j.crma.2012.07.012},
     language = {en},
}
TY  - JOUR
AU  - Vesselin Petkov
AU  - Luchezar Stoyanov
TI  - Sharp large deviations for some hyperbolic flows
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 665
EP  - 669
VL  - 350
IS  - 13-14
PB  - Elsevier
DO  - 10.1016/j.crma.2012.07.012
LA  - en
ID  - CRMATH_2012__350_13-14_665_0
ER  - 
%0 Journal Article
%A Vesselin Petkov
%A Luchezar Stoyanov
%T Sharp large deviations for some hyperbolic flows
%J Comptes Rendus. Mathématique
%D 2012
%P 665-669
%V 350
%N 13-14
%I Elsevier
%R 10.1016/j.crma.2012.07.012
%G en
%F CRMATH_2012__350_13-14_665_0
Vesselin Petkov; Luchezar Stoyanov. Sharp large deviations for some hyperbolic flows. Comptes Rendus. Mathématique, Volume 350 (2012) no. 13-14, pp. 665-669. doi : 10.1016/j.crma.2012.07.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.07.012/

[1] R. Bowen Symbolic dynamics for hyperbolic flows, Amer. J. Math., Volume 95 (1973), pp. 429-460

[2] D. Dolgopyat On decay of correlations in Anosov flows, Ann. of Math., Volume 147 (1998), pp. 357-390

[3] Yu. Kifer Large deviations in dynamical systems and stochastic processes, Trans. Amer. Math. Soc., Volume 321 (1990), pp. 505-524

[4] W. Parry; M. Pollicott Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque, Volume 187–188 (1990)

[5] V. Petkov; L. Stoyanov Sharp large deviations for some hyperbolic systems, 2012 (preprint) | arXiv

[6] M. Pollicott; R. Sharp Large deviations, fluctuations and shrinking intervals, Comm. Math. Phys., Volume 290 (2009), pp. 321-334

[7] L. Ray-Bellet; L.-S. Young Large deviations in non-uniformly hyperbolic dynamical systems, Ergodic Theory Dynam. Systems, Volume 28 (2008), pp. 587-612

[8] L. Stoyanov Spectra of Ruelle transfer operators for Axiom A flows on basic sets, Nonlinearity, Volume 24 (2011), pp. 1089-1120

[9] L. Stoyanov Regular decay of ball diameters and spectra of Ruelle operators for contact Anosov flows, Proc. Amer. Math. Soc., Volume 140 (2012), pp. 3463-3478

[10] S. Waddington Large deviation asymptotics for Anosov flows, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 13 (1996), pp. 445-484

[11] L.-S. Young Large deviations in dynamical systems, Trans. Amer. Math. Soc., Volume 318 (1990), pp. 525-543

Cité par Sources :

Commentaires - Politique