The purpose of this note is to establish an explicit equivalence between two star products ⋆ and on the symmetric algebra of a finite-dimensional Lie algebra over a field associated with the standard angular propagator and the logarithmic one respectively: the differential operator of infinite order with constant coefficients realizing the equivalence is related to the incarnation of the Grothendieck–Teichmüller group considered by Kontsevich (1999) in [5, Theorem 7]. We present in the first part the main result, and devote the second part to its proof.
Dans cette note, on construit explicitement une équivalence entre les deux produits-étoilés ⋆ et sur lʼalgèbre symétrique associée à une algèbre de Lie de dimension finie sur un corps , construits en utilisant le propagateur angulaire standard et le propagateur logarithmique respectivement : lʼoperateur differentiel dʼordre infini à coéfficients constants réalisant cette équivalence est relié à lʼincarnation du groupe de Grothendieck–Teichmüller considérée par Kontsevich (1999) dans [5, Theorem 7]. On présente dans cette première partie le résultat principal, dont la démonstration sera donnée dans la deuxième partie.
Accepted:
Published online:
Carlo A. Rossi 1
@article{CRMATH_2012__350_13-14_661_0, author = {Carlo A. Rossi}, title = {The explicit equivalence between the standard and the logarithmic star product for {Lie} algebras, {I}}, journal = {Comptes Rendus. Math\'ematique}, pages = {661--664}, publisher = {Elsevier}, volume = {350}, number = {13-14}, year = {2012}, doi = {10.1016/j.crma.2012.08.001}, language = {en}, }
TY - JOUR AU - Carlo A. Rossi TI - The explicit equivalence between the standard and the logarithmic star product for Lie algebras, I JO - Comptes Rendus. Mathématique PY - 2012 SP - 661 EP - 664 VL - 350 IS - 13-14 PB - Elsevier DO - 10.1016/j.crma.2012.08.001 LA - en ID - CRMATH_2012__350_13-14_661_0 ER -
Carlo A. Rossi. The explicit equivalence between the standard and the logarithmic star product for Lie algebras, I. Comptes Rendus. Mathématique, Volume 350 (2012) no. 13-14, pp. 661-664. doi : 10.1016/j.crma.2012.08.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.08.001/
[1] A. Alekseev, J. Löffler, C.A. Rossi, C. Torossian, Stokesʼ Theorem in presence of poles and logarithmic singularities, in preparation.
[2] A. Alekseev, J. Löffler, C.A. Rossi, C. Torossian, The logarithmic formality quasi-isomorphism, in preparation.
[3] Deformation quantization with generators and relations, J. Algebra, Volume 337 (2011), pp. 1-12 | DOI
[4] Bimodules and branes in deformation quantization, Compos. Math., Volume 147 (2011) no. 1, pp. 105-160 | DOI
[5] Operads and motives in deformation quantization, Lett. Math. Phys., Volume 48 (1999) no. 1, pp. 35-72 | DOI
[6] Deformation quantization of Poisson manifolds, Lett. Math. Phys., Volume 66 (2003) no. 3, pp. 157-216
[7] The explicit equivalence between the standard and the logarithmic star product for Lie algebras, II, C. R. Acad. Sci. Paris, Ser. I, Volume 350 (2012) | DOI
[8] Vanishing of the Kontsevich integrals of the wheels, Lett. Math. Phys., Volume 56 (2001) no. 2, pp. 141-149 | DOI
Cited by Sources:
Comments - Policy