[Compatibilité entre cup-produits, connexion dʼAlekseev–Torossian et conjecture de Kashiwara–Vergne, I]
Soit
Dans cette première partie, on fixe la notation et les conventions ; on rappelle le produit-étoilé de Kontsevich, on discute la conjecture de Kashiwara–Vergne et la relation entre elle et le produit-étoilé de Kontsevich.
For a finite-dimensional Lie algebra
In this first part, we fix notation and conventions, revise the main features of Kontsevichʼs star product and examine the Kashiwara–Vergne conjecture and its relationship with Kontsevichʼs star product.
Accepté le :
Publié le :
Carlo A. Rossi 1
@article{CRMATH_2012__350_17-18_823_0, author = {Carlo A. Rossi}, title = {On the compatibility between cup products, the {Alekseev{\textendash}Torossian} connection and the {Kashiwara{\textendash}Vergne} conjecture, {I}}, journal = {Comptes Rendus. Math\'ematique}, pages = {823--826}, publisher = {Elsevier}, volume = {350}, number = {17-18}, year = {2012}, doi = {10.1016/j.crma.2012.08.002}, language = {en}, }
TY - JOUR AU - Carlo A. Rossi TI - On the compatibility between cup products, the Alekseev–Torossian connection and the Kashiwara–Vergne conjecture, I JO - Comptes Rendus. Mathématique PY - 2012 SP - 823 EP - 826 VL - 350 IS - 17-18 PB - Elsevier DO - 10.1016/j.crma.2012.08.002 LA - en ID - CRMATH_2012__350_17-18_823_0 ER -
%0 Journal Article %A Carlo A. Rossi %T On the compatibility between cup products, the Alekseev–Torossian connection and the Kashiwara–Vergne conjecture, I %J Comptes Rendus. Mathématique %D 2012 %P 823-826 %V 350 %N 17-18 %I Elsevier %R 10.1016/j.crma.2012.08.002 %G en %F CRMATH_2012__350_17-18_823_0
Carlo A. Rossi. On the compatibility between cup products, the Alekseev–Torossian connection and the Kashiwara–Vergne conjecture, I. Comptes Rendus. Mathématique, Volume 350 (2012) no. 17-18, pp. 823-826. doi : 10.1016/j.crma.2012.08.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.08.002/
[1] Kontsevich deformation quantization and flat connections, Comm. Math. Phys., Volume 300 (2010) no. 1, pp. 47-64 | DOI
[2] Two-colored noncommutative Gerstenhaber formality and infinity Duflo isomorphism, 2011 | arXiv
[3] Convolution of invariant distributions: proof of the Kashiwara–Vergne conjecture, Lett. Math. Phys., Volume 69 (2004), pp. 177-203 | DOI
[4] The Campbell–Hausdorff formula and invariant hyperfunctions, Invent. Math., Volume 47 (1978) no. 3, pp. 249-272
[5] Kontsevichʼs universal formula for deformation quantization and the Campbell–Baker–Hausdorff formula, Internat. J. Math., Volume 11 (2000) no. 4, pp. 523-551 | DOI
[6] Deformation quantization of Poisson manifolds, Lett. Math. Phys., Volume 66 (2003) no. 3, pp. 157-216
[7] On the morphism of Duflo–Kirillov type, J. Geom. Phys., Volume 41 (2002) no. 1–2, pp. 73-113 | DOI
[8] The explicit equivalence between the standard and the logarithmic star product for Lie algebras, II, C. R. Acad. Sci. Paris, Ser. I, Volume 350 (2012) no. 15–16, pp. 745-748
[9] Sur la conjecture combinatoire de Kashiwara–Vergne, J. Lie Theory, Volume 12 (2002) no. 2, pp. 597-616
[10] Deformation quantization with generators and relations, J. Algebra, Volume 337 (2011), pp. 1-12 | DOI
[11] Vanishing of the Kontsevich integrals of the wheels, Dijon (Lett. Math. Phys.), Volume 56 (2001) no. 2, pp. 141-149 | DOI
- The Kashiwara-Vergne Method for Lie Groups, Symmetric Spaces and the Kashiwara-Vergne Method, Volume 2115 (2014), p. 1 | DOI:10.1007/978-3-319-09773-2_1
- Convolution on Homogeneous Spaces, Symmetric Spaces and the Kashiwara-Vergne Method, Volume 2115 (2014), p. 51 | DOI:10.1007/978-3-319-09773-2_2
- The Role of e-Functions, Symmetric Spaces and the Kashiwara-Vergne Method, Volume 2115 (2014), p. 57 | DOI:10.1007/978-3-319-09773-2_3
- On the compatibility between cup products, the Alekseev–Torossian connection and the Kashiwara–Vergne conjecture, II, Comptes Rendus. Mathématique, Volume 350 (2012) no. 19-20, p. 871 | DOI:10.1016/j.crma.2012.09.017
Cité par 4 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier