In this Note, we unveil homotopy-rich algebraic structures generated by the Atiyah classes relative to a Lie pair of algebroids. In particular, we prove that the quotient of such a pair admits an essentially canonical homotopy module structure over the Lie algebroid A, which we call Kapranov module.
Dans cette note, nous dévoilons des structures algébriques, riches en homotopies, engendrées par les classes dʼAtiyah relatives à une paire de Lie dʼalgébroïdes. En particulier, nous prouvons que le quotient dʼune telle paire admet une structure essentiellement canonique de module à homotopie près sur lʼalgébroïde de Lie A que nous appelons module de Kapranov.
Accepted:
Published online:
Camille Laurent-Gengoux 1; Mathieu Stiénon 2; Ping Xu 2
@article{CRMATH_2012__350_17-18_817_0, author = {Camille Laurent-Gengoux and Mathieu Sti\'enon and Ping Xu}, title = {Exponential map and $ {L}_{\infty }$ algebra associated to a {Lie} pair}, journal = {Comptes Rendus. Math\'ematique}, pages = {817--821}, publisher = {Elsevier}, volume = {350}, number = {17-18}, year = {2012}, doi = {10.1016/j.crma.2012.08.009}, language = {en}, }
TY - JOUR AU - Camille Laurent-Gengoux AU - Mathieu Stiénon AU - Ping Xu TI - Exponential map and $ {L}_{\infty }$ algebra associated to a Lie pair JO - Comptes Rendus. Mathématique PY - 2012 SP - 817 EP - 821 VL - 350 IS - 17-18 PB - Elsevier DO - 10.1016/j.crma.2012.08.009 LA - en ID - CRMATH_2012__350_17-18_817_0 ER -
Camille Laurent-Gengoux; Mathieu Stiénon; Ping Xu. Exponential map and $ {L}_{\infty }$ algebra associated to a Lie pair. Comptes Rendus. Mathématique, Volume 350 (2012) no. 17-18, pp. 817-821. doi : 10.1016/j.crma.2012.08.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.08.009/
[1] Kodaira–Spencer theory of gravity and exact results for quantum string amplitudes, Comm. Math. Phys., Volume 165 (1994) no. 2, pp. 311-427 MR 1301851 (95f:32029)
[2] Isometric imbedding of complex manifolds, Ann. of Math. (2), Volume 58 (1953), pp. 1-23 MR 0057000 (15,160c)
[3] From Atiyah classes to homotopy Leibniz algebras, 2012 | arXiv
[4] A geometric construction of the Witten genus, II, 2011 | arXiv
[5] Rozansky–Witten invariants via Atiyah classes, Compositio Math., Volume 115 (1999) no. 1, pp. 71-113 MR 1671737 (2000h:57056)
[6] Holomorphic Poisson manifolds and holomorphic Lie algebroids, Int. Math. Res. Not. IMRN (2008) Art. ID rnn 088, 46. MR 2439547 (2009i:53082)
[7] Pseudodifferential operators on differential groupoids, Pacific J. Math., Volume 189 (1999) no. 1, pp. 117-152 MR 1687747 (2000c:58036)
[8] The integration problem for complex Lie algebroids, From Geometry to Quantum Mechanics, Progr. Math., vol. 252, Birkhäuser Boston, Boston, MA, 2007, pp. 93-109 (MR 2285039)
[9] Shilin Yu, Dolbeault dga of formal neighborhoods and algebroids, Ph.D. thesis, Penn State University, State College, PA, 2013.
Cited by Sources:
☆ Research partially supported by the National Science Foundation [DMS-1101827] and the National Security Agency [H98230-12-1-0234].
Comments - Policy