B. Host et B. Kra (2005) [5] introduisent des facteurs caractéristiques pour lʼétude de « moyennes ergodiques cubiques ». Ces facteurs permettent en particulier de résoudre des problèmes de récurrence multiple introduits par H. Furstenberg (1977) [4]. Nous allons montrer que la continuité de la projection du système dans ses facteurs caractéristiques caractérisent la convergence des moyennes cubiques.
B. Host and B. Kra (2005) [5] have introduced the characteristic factors for studying “cubic ergodic means”. These factors allow one to resolve, in particular, multiple recurrence problems introduced by H. Furstenberg (1977) [4]. We show here that the continuity of the projection of the system in its characteristic factors characterises cubic means.
Accepté le :
Publié le :
Jean-François Bertazzon 1
@article{CRMATH_2012__350_13-14_699_0, author = {Jean-Fran\c{c}ois Bertazzon}, title = {Note sur la continuit\'e de la projection dans les facteurs de {Host{\textendash}Kra}}, journal = {Comptes Rendus. Math\'ematique}, pages = {699--702}, publisher = {Elsevier}, volume = {350}, number = {13-14}, year = {2012}, doi = {10.1016/j.crma.2012.08.006}, language = {fr}, }
Jean-François Bertazzon. Note sur la continuité de la projection dans les facteurs de Host–Kra. Comptes Rendus. Mathématique, Volume 350 (2012) no. 13-14, pp. 699-702. doi : 10.1016/j.crma.2012.08.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.08.006/
[1] Averages along cubes for not necessarily commuting measure preserving transformations, Contemporary Math., Volume 430 (2007), pp. 1-19
[2] Pointwise convergence of ergodic averages along cubes, J. Anal. Math., Volume 110 (2010), pp. 241-269
[3] Pointwise convergence for cubic and polynomial multiple ergodic averages of non-commuting transformations | arXiv
[4] Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Analyse Math., Volume 31 (1977), pp. 204-256
[5] Nonconventional ergodic averages and nilmanifolds, Ann. of Math. (2), Volume 161 (2005), p. 1 (397–488)
[6] Uniformity seminorms on and applications, J. Anal. Math., Volume 108 (2009), pp. 219-276
[7] Nilsequences and a structure theorem for topological dynamical systems, Adv. Math., Volume 224 (2010), p. 1 (103–129)
[8] Systems lacking higher order nilfactors | arXiv
[9] Strictly ergodic models for dynamical systems, Bull. Amer. Math. Soc. (N.S.), Volume 13 (1985), p. 2 (143–146)
[10] Single Orbit Dynamics, CBMS Regional Conference Series in Mathematics, vol. 95, Amer. Math. Soc., 2000
Cité par Sources :
Commentaires - Politique