[Problème de la constante optimale dans le théorème dʼextension
Dans cette Note, nous résolvons le problème de la détermination de la constante optimale dans le théorème dʼextension
In this Note, we solve the optimal constant problem in the
Accepté le :
Publié le :
Qiʼan Guan 1 ; Xiangyu Zhou 2
@article{CRMATH_2012__350_15-16_753_0, author = {Qi'an Guan and Xiangyu Zhou}, title = {Optimal constant problem in the $ {L}^{2}$ extension theorem}, journal = {Comptes Rendus. Math\'ematique}, pages = {753--756}, publisher = {Elsevier}, volume = {350}, number = {15-16}, year = {2012}, doi = {10.1016/j.crma.2012.08.007}, language = {en}, }
Qiʼan Guan; Xiangyu Zhou. Optimal constant problem in the $ {L}^{2}$ extension theorem. Comptes Rendus. Mathématique, Volume 350 (2012) no. 15-16, pp. 753-756. doi : 10.1016/j.crma.2012.08.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.08.007/
[1] The extension theorem of Ohsawa–Takegoshi and the theorem of Donnelly–Fefferman, Ann. LʼInst. Fourier (Grenoble), Volume 46 (1996) no. 4, pp. 1083-1094
[2] Z. Blocki, On the Ohsawa–Takegoshi extension theorem, preprint, 2012.
[3] Z. Blocki, Suita conjecture and the Ohsawa–Takegoshi extension theorem, preprint, 2012.
[4] Estimates for the
[5] A remark on an extension theorem of Ohsawa, Chin. Ann. Math., Ser. A, Volume 24 (2003), pp. 129-134 (in Chinese)
[6] Partial Differential Equations in Several Complex Variables, AMS/IP, 2001
[7] On the Ohsawa–Takegoshi–Manivel
[8] Complex analytic and differential geometry http://www-fourier.ujf-grenoble.fr/~demailly/books.html
[9] Analytic Methods in Algebraic Geometry, Higher Education Press, Beijing, 2010
[10] On the Ohsawa–Takegoshi
[11] Un théorème de prolongement
[12] On large values of
[13] Analytic inversion of adjunction:
[14] On the extension of
[15] Addendum to “On the Bergman kernel of hyperconvex domains”, Nagoya Math. J., Volume 137 (1995), pp. 145-148
[16] On the extension of
[17] Complex-analyticity of harmonic maps, vanishing and Lefschetz theorems, J. Differential Geometry, Volume 17 (1982), pp. 55-138
[18] The Fujita conjecture and the extension theorem of Ohsawa–Takegoshi, Hayama, World Scientific (1996), pp. 577-592
[19] Extension of twisted pluricanonical sections with plurisubharmonic weight and invariance of semipositively twisted plurigenera for manifolds not necessarily of general type, Göttingen, 2000, Springer, Berlin (2002), pp. 223-277
[20] Capacities and kernels on Riemann surfaces, Arch. Ration. Mech. Anal., Volume 46 (1972), pp. 212-217
[21] Lectures on the
[22] On the Ohsawa–Takegoshi
Cité par Sources :
Commentaires - Politique