Comptes Rendus
Complex Analysis
Optimal constant problem in the L2 extension theorem
[Problème de la constante optimale dans le théorème dʼextension L2]
Comptes Rendus. Mathématique, Volume 350 (2012) no. 15-16, pp. 753-756.

Dans cette Note, nous résolvons le problème de la détermination de la constante optimale dans le théorème dʼextension L2 avec poids négligeable sur les variétés de Stein. En application, nous prouvons la conjecture de Suita sur des surfaces de Riemann arbitraires.

In this Note, we solve the optimal constant problem in the L2-extension theorem with negligible weight on Stein manifolds. As an application, we prove the Suita conjecture on arbitrary open Riemann surfaces.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2012.08.007

Qiʼan Guan 1 ; Xiangyu Zhou 2

1 Beijing International Center for Mathematical Research, Peking University, Beijing, China
2 Institute of Mathematics, AMSS, and Hua Loo-Keng Key Laboratory of Mathematics, Chinese Academy of Sciences, Beijing, China
@article{CRMATH_2012__350_15-16_753_0,
     author = {Qi'an Guan and Xiangyu Zhou},
     title = {Optimal constant problem in the $ {L}^{2}$ extension theorem},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {753--756},
     publisher = {Elsevier},
     volume = {350},
     number = {15-16},
     year = {2012},
     doi = {10.1016/j.crma.2012.08.007},
     language = {en},
}
TY  - JOUR
AU  - Qiʼan Guan
AU  - Xiangyu Zhou
TI  - Optimal constant problem in the $ {L}^{2}$ extension theorem
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 753
EP  - 756
VL  - 350
IS  - 15-16
PB  - Elsevier
DO  - 10.1016/j.crma.2012.08.007
LA  - en
ID  - CRMATH_2012__350_15-16_753_0
ER  - 
%0 Journal Article
%A Qiʼan Guan
%A Xiangyu Zhou
%T Optimal constant problem in the $ {L}^{2}$ extension theorem
%J Comptes Rendus. Mathématique
%D 2012
%P 753-756
%V 350
%N 15-16
%I Elsevier
%R 10.1016/j.crma.2012.08.007
%G en
%F CRMATH_2012__350_15-16_753_0
Qiʼan Guan; Xiangyu Zhou. Optimal constant problem in the $ {L}^{2}$ extension theorem. Comptes Rendus. Mathématique, Volume 350 (2012) no. 15-16, pp. 753-756. doi : 10.1016/j.crma.2012.08.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.08.007/

[1] B. Berndtsson The extension theorem of Ohsawa–Takegoshi and the theorem of Donnelly–Fefferman, Ann. LʼInst. Fourier (Grenoble), Volume 46 (1996) no. 4, pp. 1083-1094

[2] Z. Blocki, On the Ohsawa–Takegoshi extension theorem, preprint, 2012.

[3] Z. Blocki, Suita conjecture and the Ohsawa–Takegoshi extension theorem, preprint, 2012.

[4] J. Cao; M.-C. Shaw; L. Wang Estimates for the ¯-Neumann problem and nonexistence of C2 Levi-flat hypersurfaces in CPn, Math. Z., Volume 248 (2004), pp. 183-221

[5] B. Chen A remark on an extension theorem of Ohsawa, Chin. Ann. Math., Ser. A, Volume 24 (2003), pp. 129-134 (in Chinese)

[6] S.-C. Chen; M.-C. Shaw Partial Differential Equations in Several Complex Variables, AMS/IP, 2001

[7] J.-P. Demailly On the Ohsawa–Takegoshi–Manivel L2 extension theorem, September 1997, Paris (Progress in Mathematics) (2000)

[8] J.-P. Demailly Complex analytic and differential geometry http://www-fourier.ujf-grenoble.fr/~demailly/books.html

[9] J.-P. Demailly Analytic Methods in Algebraic Geometry, Higher Education Press, Beijing, 2010

[10] Q.A. Guan; X.Y. Zhou; L.F. Zhu On the Ohsawa–Takegoshi L2 extension theorem and the twisted Bochner–Kodaira identity, C. R. Acad. Sci. Paris, Ser. I, Volume 349 (2011), pp. 797-800

[11] L. Manivel Un théorème de prolongement L2 de sections holomorphes dʼun fibré vectoriel, Math. Zeitschrift, Volume 212 (1993), pp. 107-122

[12] J. McNeal On large values of L2 holomorphic functions, Math. Res. Lett., Volume 3 (1996) no. 2, pp. 247-259

[13] J. McNeal; D. Varolin Analytic inversion of adjunction: L2 extension theorems with gain, Ann. LʼInst. Fourier (Grenoble), Volume 57 (2007) no. 3, pp. 703-718

[14] T. Ohsawa On the extension of L2 holomorphic functions. III. Negligible weights, Math. Z., Volume 219 (1995) no. 2, pp. 215-225

[15] T. Ohsawa Addendum to “On the Bergman kernel of hyperconvex domains”, Nagoya Math. J., Volume 137 (1995), pp. 145-148

[16] T. Ohsawa; K. Takegoshi On the extension of L2 holomorphic functions, Math. Z., Volume 195 (1987), pp. 197-204

[17] Y.-T. Siu Complex-analyticity of harmonic maps, vanishing and Lefschetz theorems, J. Differential Geometry, Volume 17 (1982), pp. 55-138

[18] Y.-T. Siu The Fujita conjecture and the extension theorem of Ohsawa–Takegoshi, Hayama, World Scientific (1996), pp. 577-592

[19] Y.-T. Siu Extension of twisted pluricanonical sections with plurisubharmonic weight and invariance of semipositively twisted plurigenera for manifolds not necessarily of general type, Göttingen, 2000, Springer, Berlin (2002), pp. 223-277

[20] N. Suita Capacities and kernels on Riemann surfaces, Arch. Ration. Mech. Anal., Volume 46 (1972), pp. 212-217

[21] E. Straube Lectures on the L2-Sobolev Theory of the ¯-Neumann Problem, ESI Lectures in Mathematics and Physics, European Mathematical Society, Zürich, 2010

[22] L.F. Zhu; Q.A. Guan; X.Y. Zhou On the Ohsawa–Takegoshi L2 extension theorem and the twisted Bochner–Kodaira identity with a non-smooth twist factor, J. Math. Pures Appl., Volume 97 (2012) no. 6, pp. 579-601

  • Qi'an GUAN; Zhitong MI; Zheng YUAN Guan–Zhou's unified version of optimal L2 extension theorem on weakly pseudoconvex Kähler manifolds, Journal of the Mathematical Society of Japan, Volume 77 (2025) no. 1 | DOI:10.2969/jmsj/91919191
  • Shijie Bao; Qi’an Guan; Zheng Yuan Boundary points, minimal L2 integrals and concavity property, Mathematische Annalen, Volume 391 (2025) no. 4, p. 5809 | DOI:10.1007/s00208-024-03056-8
  • Qi'an Guan; Zhitong Mi; Zheng Yuan Concavity property of minimal L2 integrals with Lebesgue measurable gain II, Advances in Mathematics, Volume 450 (2024), p. 109766 | DOI:10.1016/j.aim.2024.109766
  • Zhuo Liu; Wang Xu Characterizations of Griffiths positivity, pluriharmonicity and flatness, Journal of Functional Analysis, Volume 287 (2024) no. 7, p. 110532 | DOI:10.1016/j.jfa.2024.110532
  • Wang Xu; Xiangyu Zhou Optimal L2 extensions of openness type, Mathematische Annalen, Volume 390 (2024) no. 1, p. 1249 | DOI:10.1007/s00208-023-02774-9
  • Qi’an Guan; Xun Sun; Zheng Yuan A remark on a weighted version of Suita conjecture for higher derivatives, Mathematische Zeitschrift, Volume 307 (2024) no. 1 | DOI:10.1007/s00209-024-03486-9
  • YUTA WATANABE DUAL NAKANO POSITIVITY AND SINGULAR NAKANO POSITIVITY OF DIRECT IMAGE SHEAVES, Nagoya Mathematical Journal (2024), p. 1 | DOI:10.1017/nmj.2024.20
  • Qi’an Guan; Zhitong Mi; Zheng Yuan Optimal L2 Extension for Holomorphic Vector Bundles with Singular Hermitian Metrics, Peking Mathematical Journal (2024) | DOI:10.1007/s42543-024-00085-9
  • Qi’an Guan; Zheng Yuan Concavity Property of Minimal L2 Integrals with Lebesgue Measurable Gain IV: Product of Open Riemann Surfaces, Peking Mathematical Journal, Volume 7 (2024) no. 1, p. 91 | DOI:10.1007/s42543-022-00053-1
  • Shijie Bao; Qi’an Guan Modules at Boundary Points, Fiberwise Bergman Kernels, and Log-Subharmonicity, Peking Mathematical Journal, Volume 7 (2024) no. 2, p. 441 | DOI:10.1007/s42543-023-00070-8
  • Shijie Bao; Qi’an Guan; Zhitong Mi; Zheng Yuan Concavity Property of Minimal L2 Integrals with Lebesgue Measurable Gain VII–Negligible Weights, The Bergman Kernel and Related Topics, Volume 447 (2024), p. 1 | DOI:10.1007/978-981-99-9506-6_1
  • Xiangyu Zhou Converse of L2 Existence and Extension of Cohomology Classes, The Bergman Kernel and Related Topics, Volume 447 (2024), p. 357 | DOI:10.1007/978-981-99-9506-6_15
  • Xiangyu Zhou Recent progress in the theory of functions of several complex variables and complex geometry, Theoretical and Mathematical Physics, Volume 218 (2024) no. 1, p. 163 | DOI:10.1134/s0040577924010112
  • Wang Xu; Xiangyu Zhou Optimal L 2 Extensions of Openness Type and Related Topics, Comptes Rendus. Mathématique, Volume 361 (2023) no. G3, p. 679 | DOI:10.5802/crmath.437
  • Fusheng Deng; Jiafu Ning; Zhiwei Wang; Xiangyu Zhou Positivity of holomorphic vector bundles in terms of Lp-estimates for ¯, Mathematische Annalen, Volume 385 (2023) no. 1-2, p. 575 | DOI:10.1007/s00208-021-02348-7
  • Dano Kim; Hoseob Seo On L2 extension from singular hypersurfaces, Mathematische Zeitschrift, Volume 303 (2023) no. 4 | DOI:10.1007/s00209-023-03248-z
  • Zhi Li; Wang Xu; Xiangyu Zhou On Demailly’s L2 extension theorem from non-reduced subvarieties, Mathematische Zeitschrift, Volume 305 (2023) no. 2 | DOI:10.1007/s00209-023-03351-1
  • QI’AN GUAN; ZHENG YUAN CONCAVITY PROPERTY OF MINIMAL INTEGRALS WITH LEBESGUE MEASURABLE GAIN, Nagoya Mathematical Journal, Volume 252 (2023), p. 842 | DOI:10.1017/nmj.2023.12
  • Shijie Bao; Qi’an Guan; Zheng Yuan Concavity Property of Minimal L2 Integrals with Lebesgue Measurable Gain V–Fibrations Over Open Riemann Surfaces, The Journal of Geometric Analysis, Volume 33 (2023) no. 6 | DOI:10.1007/s12220-023-01234-9
  • Qi’an Guan; Zhenqian Li; Xiangyu Zhou Stability of Multiplier Ideal Sheaves, Chinese Annals of Mathematics, Series B, Volume 43 (2022) no. 5, p. 819 | DOI:10.1007/s11401-022-0360-3
  • Qi'an GUAN; Zheng YUAN An optimal support function related to the strong openness conjecture, Journal of the Mathematical Society of Japan, Volume 74 (2022) no. 4 | DOI:10.2969/jmsj/87048704
  • SHA YAO; ZHI LI; XIANGYU ZHOU ON THE OPTIMAL EXTENSION THEOREM AND A QUESTION OF OHSAWA, Nagoya Mathematical Journal, Volume 245 (2022), p. 154 | DOI:10.1017/nmj.2020.34
  • Xiangyu Zhou; Langfeng Zhu L2 Extensions with Singular Metrics on Kähler Manifolds, Acta Mathematica Scientia, Volume 41 (2021) no. 6, p. 2021 | DOI:10.1007/s10473-021-0614-2
  • Xiangyu Zhou; Langfeng Zhu Extension of cohomology classes and holomorphic sections defined on subvarieties, Journal of Algebraic Geometry, Volume 31 (2021) no. 1, p. 137 | DOI:10.1090/jag/766
  • Fusheng Deng; Jiafu Ning; Zhiwei Wang Characterizations of plurisubharmonic functions, Science China Mathematics, Volume 64 (2021) no. 9, p. 1959 | DOI:10.1007/s11425-021-1873-y
  • Qi’an Guan A remark on the extension of L2 holomorphic functions, International Journal of Mathematics, Volume 31 (2020) no. 02, p. 2050017 | DOI:10.1142/s0129167x20500172
  • Qi’an Guan; Xiangyu Zhou Restriction formula and subadditivity property related to multiplier ideal sheaves, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2020 (2020) no. 769, p. 1 | DOI:10.1515/crelle-2019-0043
  • Fusheng Deng; Zhiwei Wang; Liyou Zhang; Xiangyu Zhou Linear invariants of complex manifolds and their plurisubharmonic variations, Journal of Functional Analysis, Volume 279 (2020) no. 1, p. 108514 | DOI:10.1016/j.jfa.2020.108514
  • Xiangyu Zhou; Langfeng Zhu Siu’s lemma, optimal L2 extension and applications to twisted pluricanonical sheaves, Mathematische Annalen, Volume 377 (2020) no. 1-2, p. 675 | DOI:10.1007/s00208-018-1783-8
  • Xiangyu Zhou; Langfeng Zhu Optimal L2 extension of sections from subvarieties in weakly pseudoconvex manifolds, Pacific Journal of Mathematics, Volume 309 (2020) no. 2, p. 475 | DOI:10.2140/pjm.2020.309.475
  • Xiangyu Zhou Recent Results in Several Complex Variables and Complex Geometry, Proceedings of the Steklov Institute of Mathematics, Volume 311 (2020) no. 1, p. 245 | DOI:10.1134/s0081543820060164
  • Evgeny A. Poletsky Pluricomplex Green Functions on Manifolds, The Journal of Geometric Analysis, Volume 30 (2020) no. 2, p. 1396 | DOI:10.1007/s12220-019-00350-9
  • Xiang Yu Zhou Недавние результаты в многомерном комплексном анализе и комплексной геометрии, Труды Математического института имени В. А. Стеклова, Volume 311 (2020), p. 264 | DOI:10.4213/tm4144
  • Qi'an Guan A sharp effectiveness result of Demailly's strong openness conjecture, Advances in Mathematics, Volume 348 (2019), p. 51 | DOI:10.1016/j.aim.2019.03.017
  • Qi'an GUAN A proof of Saitoh's conjecture for conjugate Hardy H2 kernels, Journal of the Mathematical Society of Japan, Volume 71 (2019) no. 4 | DOI:10.2969/jmsj/80668066
  • Xiangyu Zhou Roles of Plurisubharmonic Functions, Proceedings of the Steklov Institute of Mathematics, Volume 306 (2019) no. 1, p. 288 | DOI:10.1134/s0081543819050237
  • Щань-Юй Чжоу; Xiang Yu Zhou Плюрисубгармонические функции и их приложения, Труды Математического института имени В.А. Стеклова, Volume 306 (2019), p. 304 | DOI:10.4213/tm4008
  • Xiankui Meng; Xiangyu Zhou Pseudo-effective line bundles over holomorphically convex manifolds, Journal of Algebraic Geometry, Volume 28 (2018) no. 1, p. 169 | DOI:10.1090/jag/714
  • Takeo Ohsawa On the extension of L 2 holomorphic functions VII: Hypersurfaces with isolated singularities, Science China Mathematics, Volume 60 (2017) no. 6, p. 1083 | DOI:10.1007/s11425-015-9038-9
  • Qi’An Guan; XiangYu Zhou Strong openness of multiplier ideal sheaves and optimal L 2 extension, Science China Mathematics, Volume 60 (2017) no. 6, p. 967 | DOI:10.1007/s11425-017-9055-5
  • Qi'an Guan; Xiangyu Zhou A solution of an L^2 extension problem with an optimal estimate and applications, Annals of Mathematics (2015), p. 1139 | DOI:10.4007/annals.2015.181.3.6
  • Xiangyu Zhou A Survey on L 2 Extension Problem, Complex Geometry and Dynamics, Volume 10 (2015), p. 291 | DOI:10.1007/978-3-319-20337-9_13
  • Qi’an Guan; Xiangyu Zhou Effectiveness of Demailly’s strong openness conjecture and related problems, Inventiones mathematicae, Volume 202 (2015) no. 2, p. 635 | DOI:10.1007/s00222-014-0575-3
  • Takeo Ohsawa Application and simplified proof of a sharp L2 extension theorem, Nagoya Mathematical Journal, Volume 220 (2015), p. 81 | DOI:10.1215/00277630-3335780
  • Qi’An Guan; XiangYu Zhou Optimal constant in an L 2 extension problem and a proof of a conjecture of Ohsawa, Science China Mathematics, Volume 58 (2015) no. 1, p. 35 | DOI:10.1007/s11425-014-4946-4

Cité par 45 documents. Sources : Crossref

Commentaires - Politique