[La viscosité évanescente comme critère de sélection pour les solutions de lʼéquation dʼEuler : Le cas du flot de cisaillement]
We show that for a certain family of initial data, there exist non-unique weak solutions to the 3D incompressible Euler equations satisfying the weak energy inequality, whereas the weak limit of every sequence of Leray–Hopf weak solutions for the Navier–Stokes equations, with the same initial data, and as the viscosity tends to zero, is uniquely determined and equals the shear flow solution of the Euler equations corresponding to this initial data. This simple example suggests that, also in more general situations, the vanishing viscosity limit of the Navier–Stokes equations could serve as a uniqueness criterion for weak solutions of the Euler equations.
On montre que pour une certaine famille de données initiales, il existe plusieurs solutions faibles de lʼéquation dʼEuler incompressible qui satisfont lʼinégalité dʼénergie au sens faible. Cependant toute solution faible de lʼéquation dʼEuler qui de surcroit est limite faible dʼune suite de solutions des équations de Navier–Stokes (au sens de Leray–Hopf) avec les mêmes données initiales et une viscosité évanescente est déterminée de manière unique. Cet exemple simple suggère que, de même, dans des situations plus générales, la limite pour viscosité évanescente des solutions dʼéquations de Navier–Stokes puisse servir de critère dʼunicité pour les solutions faibles des équations dʼEuler.
Accepté le :
Publié le :
Claude Bardos 1 ; Edriss S. Titi 2, 3 ; Emil Wiedemann 4
@article{CRMATH_2012__350_15-16_757_0, author = {Claude Bardos and Edriss S. Titi and Emil Wiedemann}, title = {The vanishing viscosity as a selection principle for the {Euler} equations: {The} case of {3D} shear flow}, journal = {Comptes Rendus. Math\'ematique}, pages = {757--760}, publisher = {Elsevier}, volume = {350}, number = {15-16}, year = {2012}, doi = {10.1016/j.crma.2012.09.005}, language = {en}, }
TY - JOUR AU - Claude Bardos AU - Edriss S. Titi AU - Emil Wiedemann TI - The vanishing viscosity as a selection principle for the Euler equations: The case of 3D shear flow JO - Comptes Rendus. Mathématique PY - 2012 SP - 757 EP - 760 VL - 350 IS - 15-16 PB - Elsevier DO - 10.1016/j.crma.2012.09.005 LA - en ID - CRMATH_2012__350_15-16_757_0 ER -
%0 Journal Article %A Claude Bardos %A Edriss S. Titi %A Emil Wiedemann %T The vanishing viscosity as a selection principle for the Euler equations: The case of 3D shear flow %J Comptes Rendus. Mathématique %D 2012 %P 757-760 %V 350 %N 15-16 %I Elsevier %R 10.1016/j.crma.2012.09.005 %G en %F CRMATH_2012__350_15-16_757_0
Claude Bardos; Edriss S. Titi; Emil Wiedemann. The vanishing viscosity as a selection principle for the Euler equations: The case of 3D shear flow. Comptes Rendus. Mathématique, Volume 350 (2012) no. 15-16, pp. 757-760. doi : 10.1016/j.crma.2012.09.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.09.005/
[1] Stability of viscous, and instability of non-viscous, 2D weak solutions of incompressible fluids under 3D perturbations (Preprint) | arXiv
[2] Loss of smoothness and energy conserving rough weak solutions for the 3D Euler equations, Discrete Contin. Dyn. Syst. Ser., Volume 3 (2010) no. 2, pp. 185-197
[3] Navier–Stokes Equations, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1988
[4] On admissibility criteria for weak solutions of the Euler equations, Arch. Ration. Mech. Anal., Volume 195 (2010) no. 1, pp. 225-260
[5] Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., Volume 98 (1989) no. 3, pp. 511-547
[6] Oscillations and concentrations in weak solutions of the incompressible fluid equations, Comm. Math. Phys., Volume 108 (1987) no. 4, pp. 667-689
[7] Partial Differential Equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 2010
[8] Some results on the Navier–Stokes equations in thin 3D domains, Atlanta, GA/Lisbon, 1998 (J. Differential Equations), Volume 169 (2001) no. 2, pp. 281-331
[9] The initial value problem for the Navier–Stokes equations, Proc. Sympos., Madison, Wis., 1962, Univ. of Wisconsin Press, Madison, Wis. (1963), pp. 69-98
[10] Weak solutions to the incompressible Euler equations with vortex sheet initial data, C. R. Acad. Sci. Paris, Ser. I, Volume 349 (2011) no. 19–20, pp. 1063-1066
[11] Young measures generated by ideal incompressible fluid flows, Arch. Ration. Mech. Anal., Volume 206 (2012), pp. 333-366
- Self-Similar Algebraic Spiral Solution of 2-D Incompressible Euler Equations, Annals of PDE, Volume 11 (2025) no. 1 | DOI:10.1007/s40818-025-00203-5
- Non-uniqueness inadmissibility of the vanishing viscosity limit of the passive scalar transport equation, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 198 (2025), p. 51 (Id/No 103685) | DOI:10.1016/j.matpur.2025.103685 | Zbl:8014006
- On symmetry breaking for the Navier-Stokes equations, Communications in Mathematical Physics, Volume 405 (2024) no. 2, p. 39 (Id/No 25) | DOI:10.1007/s00220-023-04897-1 | Zbl:1532.35335
- Inviscid limit for stochastic Navier-Stokes equations under general initial conditions, Journal of Differential Equations, Volume 389 (2024), pp. 114-149 | DOI:10.1016/j.jde.2024.01.010 | Zbl:1534.35299
- Which measure-valued solutions of the monoatomic gas equations are generated by weak solutions?, Archive for Rational Mechanics and Analysis, Volume 247 (2023) no. 4, p. 50 (Id/No 61) | DOI:10.1007/s00205-023-01886-5 | Zbl:1521.35137
- Probabilistic descriptions of fluid flow: a survey, Journal of Mathematical Fluid Mechanics, Volume 25 (2023) no. 3, p. 43 (Id/No 52) | DOI:10.1007/s00021-023-00800-z | Zbl:1516.76063
- Measure-valued low Mach number limits of ideal fluids, SIAM Journal on Mathematical Analysis, Volume 55 (2023) no. 2, pp. 1145-1169 | DOI:10.1137/21m1467596 | Zbl:1515.35194
- Boundary vorticity estimates for Navier-Stokes and application to the inviscid limit, SIAM Journal on Mathematical Analysis, Volume 55 (2023) no. 4, pp. 3081-3107 | DOI:10.1137/22m1503567 | Zbl:1531.35231
- Rigorous results on conserved and dissipated quantities in ideal MHD turbulence, Geophysical and Astrophysical Fluid Dynamics, Volume 116 (2022) no. 4, pp. 237-260 | DOI:10.1080/03091929.2022.2060964 | Zbl:1504.35315
- Convex integration constructions in hydrodynamics, Bulletin of the American Mathematical Society. New Series, Volume 58 (2021) no. 1, pp. 1-44 | DOI:10.1090/bull/1713 | Zbl:1461.35186
- Riemann Initial Data in Two Space Dimensions for Isentropic Euler, Convex Integration Applied to the Multi-Dimensional Compressible Euler Equations, Volume 2294 (2021), p. 153 | DOI:10.1007/978-3-030-83785-3_7
- On the selection of measure-valued solutions for the isentropic Euler system, Journal of Differential Equations, Volume 271 (2021), pp. 979-1006 | DOI:10.1016/j.jde.2020.09.028 | Zbl:1462.35269
- On the asymptotic stability of advection-diffusion equations of mass transport in a bubble column bioreactor, Journal of Physics: Conference Series, Volume 2090 (2021) no. 1, p. 012035 | DOI:10.1088/1742-6596/2090/1/012035
- Smooth approximation is not a selection principle for the transport equation with rough vector field, Calculus of Variations and Partial Differential Equations, Volume 59 (2020) no. 1, p. 21 (Id/No 13) | DOI:10.1007/s00526-019-1659-0 | Zbl:1428.35082
- Observability of Bacterial Growth Models in Bubble Column Bioreactors, Computational Intelligence Methods for Bioinformatics and Biostatistics, Volume 12313 (2020), p. 309 | DOI:10.1007/978-3-030-63061-4_27
- Onsager-type conjecture and renormalized solutions for the relativistic Vlasov-Maxwell system, Quarterly of Applied Mathematics, Volume 78 (2020) no. 2, pp. 193-217 | DOI:10.1090/qam/1549 | Zbl:1431.35189
- The vanishing viscosity limit for some symmetric flows, Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, Volume 36 (2019) no. 5, pp. 1237-1280 | DOI:10.1016/j.anihpc.2018.11.006 | Zbl:1416.35025
- Zero viscosity boundary effect limit and turbulence, Contributions to partial differential equations and applications. Invited papers of the conferences `Contributions to partial differential equations', Université Pierre et Marie Curie, Paris, France, August 31 – September 1, 2015 and `Applied and computational mathematics', University of Houston, Texas, USA, February 26–27, 2016, Cham: Springer, 2019, pp. 77-90 | DOI:10.1007/978-3-319-78325-3_7 | Zbl:1416.76069
- Proof of the Onsager conjecture in a bounded domain, Actes du colloque “EDP-Normandie”, Caen, France, Octobre 25–26, 2017, [s.l.]: Fédération Normandie-Mathématiques, 2018, pp. 1-9 | Zbl:1397.35188
- Remarks on high Reynolds numbers hydrodynamics and the inviscid limit, Journal of Nonlinear Science, Volume 28 (2018) no. 2, pp. 711-724 | DOI:10.1007/s00332-017-9424-z | Zbl:1384.35057
- Statistical solutions of hyperbolic conservation laws: foundations, Archive for Rational Mechanics and Analysis, Volume 226 (2017) no. 2, pp. 809-849 | DOI:10.1007/s00205-017-1145-9 | Zbl:1373.35193
- Fluids, elasticity, geometry, and the existence of wrinkled solutions, Archive for Rational Mechanics and Analysis, Volume 226 (2017) no. 3, pp. 1009-1060 | DOI:10.1007/s00205-017-1149-5 | Zbl:1382.35203
- Remarks on the inviscid limit for the Navier-Stokes equations for uniformly bounded velocity fields, SIAM Journal on Mathematical Analysis, Volume 49 (2017) no. 3, pp. 1932-1946 | DOI:10.1137/15m1054572 | Zbl:1373.35239
- Enhanced dissipation and inviscid damping in the inviscid limit of the Navier-Stokes equations near the two dimensional Couette flow, Archive for Rational Mechanics and Analysis, Volume 219 (2016) no. 3, pp. 1087-1159 | DOI:10.1007/s00205-015-0917-3 | Zbl:1339.35208
- Hölder continuous solutions of active scalar equations, Annals of PDE, Volume 1 (2015) no. 1, p. 77 (Id/No 2) | DOI:10.1007/s40818-015-0002-0 | Zbl:1395.35061
- On the inviscid limit of the Navier-Stokes equations, Proceedings of the American Mathematical Society, Volume 143 (2015) no. 7, pp. 3075-3090 | DOI:10.1090/s0002-9939-2015-12638-x | Zbl:1309.35073
- Non-uniqueness for the Euler equations: the effect of the boundary, Russian Mathematical Surveys, Volume 69 (2014) no. 2, p. 189 | DOI:10.1070/rm2014v069n02abeh004886
- Об отсутствии единственности для уравнений Эйлера: эффект границы, Успехи математических наук, Volume 69 (2014) no. 2(416), p. 3 | DOI:10.4213/rm9578
- Inviscid symmetry breaking with non-increasing energy, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 351 (2013) no. 23-24, pp. 907-910 | DOI:10.1016/j.crma.2013.10.021 | Zbl:1285.35074
- The 3D incompressible Euler equations with a passive scalar: a road to blow-up?, Journal of Nonlinear Science, Volume 23 (2013) no. 6, pp. 993-1000 | DOI:10.1007/s00332-013-9175-4 | Zbl:1292.35216
- Mathematics and turbulence: where do we stand?, Journal of Turbulence, Volume 14 (2013) no. 3, p. 42 | DOI:10.1080/14685248.2013.771838
- Stretching and Folding Processes in the 3D Euler and Navier-Stokes Equations, Procedia IUTAM, Volume 9 (2013), p. 25 | DOI:10.1016/j.piutam.2013.09.004
- Boundary-layer interactions in the plane-parallel incompressible flows, Nonlinearity, Volume 25 (2012) no. 12, p. 3327 | DOI:10.1088/0951-7715/25/12/3327
Cité par 33 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier