Comptes Rendus
Partial Differential Equations/Numerical Analysis
The vanishing viscosity as a selection principle for the Euler equations: The case of 3D shear flow
[La viscosité évanescente comme critère de sélection pour les solutions de lʼéquation dʼEuler : Le cas du flot de cisaillement]
Comptes Rendus. Mathématique, Volume 350 (2012) no. 15-16, pp. 757-760.

We show that for a certain family of initial data, there exist non-unique weak solutions to the 3D incompressible Euler equations satisfying the weak energy inequality, whereas the weak limit of every sequence of Leray–Hopf weak solutions for the Navier–Stokes equations, with the same initial data, and as the viscosity tends to zero, is uniquely determined and equals the shear flow solution of the Euler equations corresponding to this initial data. This simple example suggests that, also in more general situations, the vanishing viscosity limit of the Navier–Stokes equations could serve as a uniqueness criterion for weak solutions of the Euler equations.

On montre que pour une certaine famille de données initiales, il existe plusieurs solutions faibles de lʼéquation dʼEuler incompressible qui satisfont lʼinégalité dʼénergie au sens faible. Cependant toute solution faible de lʼéquation dʼEuler qui de surcroit est limite faible dʼune suite de solutions des équations de Navier–Stokes (au sens de Leray–Hopf) avec les mêmes données initiales et une viscosité évanescente est déterminée de manière unique. Cet exemple simple suggère que, de même, dans des situations plus générales, la limite pour viscosité évanescente des solutions dʼéquations de Navier–Stokes puisse servir de critère dʼunicité pour les solutions faibles des équations dʼEuler.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2012.09.005

Claude Bardos 1 ; Edriss S. Titi 2, 3 ; Emil Wiedemann 4

1 Laboratoire Jacques-Louis-Lions, 4, place Jussieu, 75005 Paris, France
2 Department of Mathematics, University of California, Irvine, CA 92697, USA
3 Faculty of Mathematics and Computer Science, The Weizmann Institute of Science, Rehovot 76100, Israel
4 Department of Mathematics, University of British Columbia, and Pacific Institute for the Mathematical Sciences, Vancouver, BC, Canada
@article{CRMATH_2012__350_15-16_757_0,
     author = {Claude Bardos and Edriss S. Titi and Emil Wiedemann},
     title = {The vanishing viscosity as a selection principle for the {Euler} equations: {The} case of {3D} shear flow},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {757--760},
     publisher = {Elsevier},
     volume = {350},
     number = {15-16},
     year = {2012},
     doi = {10.1016/j.crma.2012.09.005},
     language = {en},
}
TY  - JOUR
AU  - Claude Bardos
AU  - Edriss S. Titi
AU  - Emil Wiedemann
TI  - The vanishing viscosity as a selection principle for the Euler equations: The case of 3D shear flow
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 757
EP  - 760
VL  - 350
IS  - 15-16
PB  - Elsevier
DO  - 10.1016/j.crma.2012.09.005
LA  - en
ID  - CRMATH_2012__350_15-16_757_0
ER  - 
%0 Journal Article
%A Claude Bardos
%A Edriss S. Titi
%A Emil Wiedemann
%T The vanishing viscosity as a selection principle for the Euler equations: The case of 3D shear flow
%J Comptes Rendus. Mathématique
%D 2012
%P 757-760
%V 350
%N 15-16
%I Elsevier
%R 10.1016/j.crma.2012.09.005
%G en
%F CRMATH_2012__350_15-16_757_0
Claude Bardos; Edriss S. Titi; Emil Wiedemann. The vanishing viscosity as a selection principle for the Euler equations: The case of 3D shear flow. Comptes Rendus. Mathématique, Volume 350 (2012) no. 15-16, pp. 757-760. doi : 10.1016/j.crma.2012.09.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.09.005/

[1] Claude Bardos; Milton Lopes Filho; Dongjuan Niu; Helena Nussenzveig Lopes; Edriss S. Titi Stability of viscous, and instability of non-viscous, 2D weak solutions of incompressible fluids under 3D perturbations (Preprint) | arXiv

[2] Claude Bardos; Edriss S. Titi Loss of smoothness and energy conserving rough weak solutions for the 3D Euler equations, Discrete Contin. Dyn. Syst. Ser., Volume 3 (2010) no. 2, pp. 185-197

[3] Peter Constantin; Ciprian Foias Navier–Stokes Equations, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1988

[4] Camillo de Lellis; László Székelyhidi On admissibility criteria for weak solutions of the Euler equations, Arch. Ration. Mech. Anal., Volume 195 (2010) no. 1, pp. 225-260

[5] R.J. DiPerna; P.-L. Lions Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., Volume 98 (1989) no. 3, pp. 511-547

[6] Ronald J. DiPerna; Andrew J. Majda Oscillations and concentrations in weak solutions of the incompressible fluid equations, Comm. Math. Phys., Volume 108 (1987) no. 4, pp. 667-689

[7] Lawrence C. Evans Partial Differential Equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 2010

[8] Dragoş Iftimie; Geneviève Raugel Some results on the Navier–Stokes equations in thin 3D domains, Atlanta, GA/Lisbon, 1998 (J. Differential Equations), Volume 169 (2001) no. 2, pp. 281-331

[9] James Serrin The initial value problem for the Navier–Stokes equations, Proc. Sympos., Madison, Wis., 1962, Univ. of Wisconsin Press, Madison, Wis. (1963), pp. 69-98

[10] László Székelyhidi Weak solutions to the incompressible Euler equations with vortex sheet initial data, C. R. Acad. Sci. Paris, Ser. I, Volume 349 (2011) no. 19–20, pp. 1063-1066

[11] László Székelyhidi; Emil Wiedemann Young measures generated by ideal incompressible fluid flows, Arch. Ration. Mech. Anal., Volume 206 (2012), pp. 333-366

  • Feng Shao; Dongyi Wei; Zhifei Zhang Self-Similar Algebraic Spiral Solution of 2-D Incompressible Euler Equations, Annals of PDE, Volume 11 (2025) no. 1 | DOI:10.1007/s40818-025-00203-5
  • L. Huysmans; Edriss S. Titi Non-uniqueness inadmissibility of the vanishing viscosity limit of the passive scalar transport equation, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 198 (2025), p. 51 (Id/No 103685) | DOI:10.1016/j.matpur.2025.103685 | Zbl:8014006
  • Tobias Barker; Christophe Prange; Jin Tan On symmetry breaking for the Navier-Stokes equations, Communications in Mathematical Physics, Volume 405 (2024) no. 2, p. 39 (Id/No 25) | DOI:10.1007/s00220-023-04897-1 | Zbl:1532.35335
  • Eliseo Luongo Inviscid limit for stochastic Navier-Stokes equations under general initial conditions, Journal of Differential Equations, Volume 389 (2024), pp. 114-149 | DOI:10.1016/j.jde.2024.01.010 | Zbl:1534.35299
  • Dennis Gallenmüller; Emil Wiedemann Which measure-valued solutions of the monoatomic gas equations are generated by weak solutions?, Archive for Rational Mechanics and Analysis, Volume 247 (2023) no. 4, p. 50 (Id/No 61) | DOI:10.1007/s00205-023-01886-5 | Zbl:1521.35137
  • Dennis Gallenmüller; Raphael Wagner; Emil Wiedemann Probabilistic descriptions of fluid flow: a survey, Journal of Mathematical Fluid Mechanics, Volume 25 (2023) no. 3, p. 43 (Id/No 52) | DOI:10.1007/s00021-023-00800-z | Zbl:1516.76063
  • Dennis Gallenmüller Measure-valued low Mach number limits of ideal fluids, SIAM Journal on Mathematical Analysis, Volume 55 (2023) no. 2, pp. 1145-1169 | DOI:10.1137/21m1467596 | Zbl:1515.35194
  • Alexis F. Vasseur; Jincheng Yang Boundary vorticity estimates for Navier-Stokes and application to the inviscid limit, SIAM Journal on Mathematical Analysis, Volume 55 (2023) no. 4, pp. 3081-3107 | DOI:10.1137/22m1503567 | Zbl:1531.35231
  • Daniel Faraco; Sauli Lindberg; László Székelyhidi Rigorous results on conserved and dissipated quantities in ideal MHD turbulence, Geophysical and Astrophysical Fluid Dynamics, Volume 116 (2022) no. 4, pp. 237-260 | DOI:10.1080/03091929.2022.2060964 | Zbl:1504.35315
  • Tristan Buckmaster; Vlad Vicol Convex integration constructions in hydrodynamics, Bulletin of the American Mathematical Society. New Series, Volume 58 (2021) no. 1, pp. 1-44 | DOI:10.1090/bull/1713 | Zbl:1461.35186
  • Simon Markfelder Riemann Initial Data in Two Space Dimensions for Isentropic Euler, Convex Integration Applied to the Multi-Dimensional Compressible Euler Equations, Volume 2294 (2021), p. 153 | DOI:10.1007/978-3-030-83785-3_7
  • Dennis Gallenmüller; Emil Wiedemann On the selection of measure-valued solutions for the isentropic Euler system, Journal of Differential Equations, Volume 271 (2021), pp. 979-1006 | DOI:10.1016/j.jde.2020.09.028 | Zbl:1462.35269
  • Paola Lecca; Angela Re On the asymptotic stability of advection-diffusion equations of mass transport in a bubble column bioreactor, Journal of Physics: Conference Series, Volume 2090 (2021) no. 1, p. 012035 | DOI:10.1088/1742-6596/2090/1/012035
  • Gennaro Ciampa; Gianluca Crippa; Stefano Spirito Smooth approximation is not a selection principle for the transport equation with rough vector field, Calculus of Variations and Partial Differential Equations, Volume 59 (2020) no. 1, p. 21 (Id/No 13) | DOI:10.1007/s00526-019-1659-0 | Zbl:1428.35082
  • Paola Lecca; Angela Re Observability of Bacterial Growth Models in Bubble Column Bioreactors, Computational Intelligence Methods for Bioinformatics and Biostatistics, Volume 12313 (2020), p. 309 | DOI:10.1007/978-3-030-63061-4_27
  • Claude Bardos; Nicolas Besse; Toan T. Nguyen Onsager-type conjecture and renormalized solutions for the relativistic Vlasov-Maxwell system, Quarterly of Applied Mathematics, Volume 78 (2020) no. 2, pp. 193-217 | DOI:10.1090/qam/1549 | Zbl:1431.35189
  • Gung-Min Gie; James P. Kelliher; Milton C. Lopes Filho; Anna L. Mazzucato; Helena J. Nussenzveig Lopes The vanishing viscosity limit for some symmetric flows, Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, Volume 36 (2019) no. 5, pp. 1237-1280 | DOI:10.1016/j.anihpc.2018.11.006 | Zbl:1416.35025
  • Claude Bardos Zero viscosity boundary effect limit and turbulence, Contributions to partial differential equations and applications. Invited papers of the conferences `Contributions to partial differential equations', Université Pierre et Marie Curie, Paris, France, August 31 – September 1, 2015 and `Applied and computational mathematics', University of Houston, Texas, USA, February 26–27, 2016, Cham: Springer, 2019, pp. 77-90 | DOI:10.1007/978-3-319-78325-3_7 | Zbl:1416.76069
  • Claude Bardos Proof of the Onsager conjecture in a bounded domain, Actes du colloque “EDP-Normandie”, Caen, France, Octobre 25–26, 2017, [s.l.]: Fédération Normandie-Mathématiques, 2018, pp. 1-9 | Zbl:1397.35188
  • Peter Constantin; Vlad Vicol Remarks on high Reynolds numbers hydrodynamics and the inviscid limit, Journal of Nonlinear Science, Volume 28 (2018) no. 2, pp. 711-724 | DOI:10.1007/s00332-017-9424-z | Zbl:1384.35057
  • U. S. Fjordholm; S. Lanthaler; S. Mishra Statistical solutions of hyperbolic conservation laws: foundations, Archive for Rational Mechanics and Analysis, Volume 226 (2017) no. 2, pp. 809-849 | DOI:10.1007/s00205-017-1145-9 | Zbl:1373.35193
  • Amit Acharya; Gui-Qiang G. Chen; Siran Li; Marshall Slemrod; Dehua Wang Fluids, elasticity, geometry, and the existence of wrinkled solutions, Archive for Rational Mechanics and Analysis, Volume 226 (2017) no. 3, pp. 1009-1060 | DOI:10.1007/s00205-017-1149-5 | Zbl:1382.35203
  • Peter Constantin; Tarek Elgindi; Mihaela Ignatova; Vlad Vicol Remarks on the inviscid limit for the Navier-Stokes equations for uniformly bounded velocity fields, SIAM Journal on Mathematical Analysis, Volume 49 (2017) no. 3, pp. 1932-1946 | DOI:10.1137/15m1054572 | Zbl:1373.35239
  • Jacob Bedrossian; Nader Masmoudi; Vlad Vicol Enhanced dissipation and inviscid damping in the inviscid limit of the Navier-Stokes equations near the two dimensional Couette flow, Archive for Rational Mechanics and Analysis, Volume 219 (2016) no. 3, pp. 1087-1159 | DOI:10.1007/s00205-015-0917-3 | Zbl:1339.35208
  • Philip Isett; Vlad Vicol Hölder continuous solutions of active scalar equations, Annals of PDE, Volume 1 (2015) no. 1, p. 77 (Id/No 2) | DOI:10.1007/s40818-015-0002-0 | Zbl:1395.35061
  • Peter Constantin; Igor Kukavica; Vlad Vicol On the inviscid limit of the Navier-Stokes equations, Proceedings of the American Mathematical Society, Volume 143 (2015) no. 7, pp. 3075-3090 | DOI:10.1090/s0002-9939-2015-12638-x | Zbl:1309.35073
  • C Bardos; L Szekelyhidi, Jr.; E Wiedemann Non-uniqueness for the Euler equations: the effect of the boundary, Russian Mathematical Surveys, Volume 69 (2014) no. 2, p. 189 | DOI:10.1070/rm2014v069n02abeh004886
  • Клод Бардос; Claude Bardos; Ласло Секелихиди мл.; Laszlo Szekelyhidi, Jr.; Эмиль Видеманн; Emil Wiedemann Об отсутствии единственности для уравнений Эйлера: эффект границы, Успехи математических наук, Volume 69 (2014) no. 2(416), p. 3 | DOI:10.4213/rm9578
  • Emil Wiedemann Inviscid symmetry breaking with non-increasing energy, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 351 (2013) no. 23-24, pp. 907-910 | DOI:10.1016/j.crma.2013.10.021 | Zbl:1285.35074
  • John D. Gibbon; Edriss S. Titi The 3D incompressible Euler equations with a passive scalar: a road to blow-up?, Journal of Nonlinear Science, Volume 23 (2013) no. 6, pp. 993-1000 | DOI:10.1007/s00332-013-9175-4 | Zbl:1292.35216
  • Claude W. Bardos; Edriss S. Titi Mathematics and turbulence: where do we stand?, Journal of Turbulence, Volume 14 (2013) no. 3, p. 42 | DOI:10.1080/14685248.2013.771838
  • J.D. Gibbon; D.D. Holm Stretching and Folding Processes in the 3D Euler and Navier-Stokes Equations, Procedia IUTAM, Volume 9 (2013), p. 25 | DOI:10.1016/j.piutam.2013.09.004
  • Toan T Nguyen; Franck Sueur Boundary-layer interactions in the plane-parallel incompressible flows, Nonlinearity, Volume 25 (2012) no. 12, p. 3327 | DOI:10.1088/0951-7715/25/12/3327

Cité par 33 documents. Sources : Crossref, zbMATH

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: