Comptes Rendus
Lie Algebras/Differential Geometry
Exponential map and L algebra associated to a Lie pair
[Application exponentielle et algébre L associée à une paire de Lie]
Comptes Rendus. Mathématique, Volume 350 (2012) no. 17-18, pp. 817-821.

Dans cette note, nous dévoilons des structures algébriques, riches en homotopies, engendrées par les classes dʼAtiyah relatives à une paire de Lie (L,A) dʼalgébroïdes. En particulier, nous prouvons que le quotient L/A dʼune telle paire admet une structure essentiellement canonique de module à homotopie près sur lʼalgébroïde de Lie A que nous appelons module de Kapranov.

In this Note, we unveil homotopy-rich algebraic structures generated by the Atiyah classes relative to a Lie pair (L,A) of algebroids. In particular, we prove that the quotient L/A of such a pair admits an essentially canonical homotopy module structure over the Lie algebroid A, which we call Kapranov module.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2012.08.009

Camille Laurent-Gengoux 1 ; Mathieu Stiénon 2 ; Ping Xu 2

1 Département de mathématiques, université de Lorraine, île du Saulcy, 57000 Metz, France
2 Department of Mathematics, Penn State University, University Park, PA 16802, USA
@article{CRMATH_2012__350_17-18_817_0,
     author = {Camille Laurent-Gengoux and Mathieu Sti\'enon and Ping Xu},
     title = {Exponential map and $ {L}_{\infty }$ algebra associated to a {Lie} pair},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {817--821},
     publisher = {Elsevier},
     volume = {350},
     number = {17-18},
     year = {2012},
     doi = {10.1016/j.crma.2012.08.009},
     language = {en},
}
TY  - JOUR
AU  - Camille Laurent-Gengoux
AU  - Mathieu Stiénon
AU  - Ping Xu
TI  - Exponential map and $ {L}_{\infty }$ algebra associated to a Lie pair
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 817
EP  - 821
VL  - 350
IS  - 17-18
PB  - Elsevier
DO  - 10.1016/j.crma.2012.08.009
LA  - en
ID  - CRMATH_2012__350_17-18_817_0
ER  - 
%0 Journal Article
%A Camille Laurent-Gengoux
%A Mathieu Stiénon
%A Ping Xu
%T Exponential map and $ {L}_{\infty }$ algebra associated to a Lie pair
%J Comptes Rendus. Mathématique
%D 2012
%P 817-821
%V 350
%N 17-18
%I Elsevier
%R 10.1016/j.crma.2012.08.009
%G en
%F CRMATH_2012__350_17-18_817_0
Camille Laurent-Gengoux; Mathieu Stiénon; Ping Xu. Exponential map and $ {L}_{\infty }$ algebra associated to a Lie pair. Comptes Rendus. Mathématique, Volume 350 (2012) no. 17-18, pp. 817-821. doi : 10.1016/j.crma.2012.08.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.08.009/

[1] M. Bershadsky; S. Cecotti; H. Ooguri; C. Vafa Kodaira–Spencer theory of gravity and exact results for quantum string amplitudes, Comm. Math. Phys., Volume 165 (1994) no. 2, pp. 311-427 MR 1301851 (95f:32029)

[2] Eugenio Calabi Isometric imbedding of complex manifolds, Ann. of Math. (2), Volume 58 (1953), pp. 1-23 MR 0057000 (15,160c)

[3] Zhuo Chen; Mathieu Stiénon; Ping Xu From Atiyah classes to homotopy Leibniz algebras, 2012 | arXiv

[4] Kevin J. Costello A geometric construction of the Witten genus, II, 2011 | arXiv

[5] M. Kapranov Rozansky–Witten invariants via Atiyah classes, Compositio Math., Volume 115 (1999) no. 1, pp. 71-113 MR 1671737 (2000h:57056)

[6] Camille Laurent-Gengoux; Mathieu Stiénon; Ping Xu Holomorphic Poisson manifolds and holomorphic Lie algebroids, Int. Math. Res. Not. IMRN (2008) Art. ID rnn 088, 46. MR 2439547 (2009i:53082)

[7] Victor Nistor; Alan Weinstein; Ping Xu Pseudodifferential operators on differential groupoids, Pacific J. Math., Volume 189 (1999) no. 1, pp. 117-152 MR 1687747 (2000c:58036)

[8] Alan Weinstein The integration problem for complex Lie algebroids, From Geometry to Quantum Mechanics, Progr. Math., vol. 252, Birkhäuser Boston, Boston, MA, 2007, pp. 93-109 (MR 2285039)

[9] Shilin Yu, Dolbeault dga of formal neighborhoods and L algebroids, Ph.D. thesis, Penn State University, State College, PA, 2013.

Cité par Sources :

Research partially supported by the National Science Foundation [DMS-1101827] and the National Security Agency [H98230-12-1-0234].

Commentaires - Politique