[Application exponentielle et algébre associée à une paire de Lie]
Dans cette note, nous dévoilons des structures algébriques, riches en homotopies, engendrées par les classes dʼAtiyah relatives à une paire de Lie dʼalgébroïdes. En particulier, nous prouvons que le quotient dʼune telle paire admet une structure essentiellement canonique de module à homotopie près sur lʼalgébroïde de Lie A que nous appelons module de Kapranov.
In this Note, we unveil homotopy-rich algebraic structures generated by the Atiyah classes relative to a Lie pair of algebroids. In particular, we prove that the quotient of such a pair admits an essentially canonical homotopy module structure over the Lie algebroid A, which we call Kapranov module.
Accepté le :
Publié le :
Camille Laurent-Gengoux 1 ; Mathieu Stiénon 2 ; Ping Xu 2
@article{CRMATH_2012__350_17-18_817_0, author = {Camille Laurent-Gengoux and Mathieu Sti\'enon and Ping Xu}, title = {Exponential map and $ {L}_{\infty }$ algebra associated to a {Lie} pair}, journal = {Comptes Rendus. Math\'ematique}, pages = {817--821}, publisher = {Elsevier}, volume = {350}, number = {17-18}, year = {2012}, doi = {10.1016/j.crma.2012.08.009}, language = {en}, }
TY - JOUR AU - Camille Laurent-Gengoux AU - Mathieu Stiénon AU - Ping Xu TI - Exponential map and $ {L}_{\infty }$ algebra associated to a Lie pair JO - Comptes Rendus. Mathématique PY - 2012 SP - 817 EP - 821 VL - 350 IS - 17-18 PB - Elsevier DO - 10.1016/j.crma.2012.08.009 LA - en ID - CRMATH_2012__350_17-18_817_0 ER -
Camille Laurent-Gengoux; Mathieu Stiénon; Ping Xu. Exponential map and $ {L}_{\infty }$ algebra associated to a Lie pair. Comptes Rendus. Mathématique, Volume 350 (2012) no. 17-18, pp. 817-821. doi : 10.1016/j.crma.2012.08.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.08.009/
[1] Kodaira–Spencer theory of gravity and exact results for quantum string amplitudes, Comm. Math. Phys., Volume 165 (1994) no. 2, pp. 311-427 MR 1301851 (95f:32029)
[2] Isometric imbedding of complex manifolds, Ann. of Math. (2), Volume 58 (1953), pp. 1-23 MR 0057000 (15,160c)
[3] From Atiyah classes to homotopy Leibniz algebras, 2012 | arXiv
[4] A geometric construction of the Witten genus, II, 2011 | arXiv
[5] Rozansky–Witten invariants via Atiyah classes, Compositio Math., Volume 115 (1999) no. 1, pp. 71-113 MR 1671737 (2000h:57056)
[6] Holomorphic Poisson manifolds and holomorphic Lie algebroids, Int. Math. Res. Not. IMRN (2008) Art. ID rnn 088, 46. MR 2439547 (2009i:53082)
[7] Pseudodifferential operators on differential groupoids, Pacific J. Math., Volume 189 (1999) no. 1, pp. 117-152 MR 1687747 (2000c:58036)
[8] The integration problem for complex Lie algebroids, From Geometry to Quantum Mechanics, Progr. Math., vol. 252, Birkhäuser Boston, Boston, MA, 2007, pp. 93-109 (MR 2285039)
[9] Shilin Yu, Dolbeault dga of formal neighborhoods and algebroids, Ph.D. thesis, Penn State University, State College, PA, 2013.
Cité par Sources :
☆ Research partially supported by the National Science Foundation [DMS-1101827] and the National Security Agency [H98230-12-1-0234].
Commentaires - Politique