[Quotients partiels et représentation des nombres rationnels]
On démontre lʼexistence dʼune constante C telle que tout rationnel
It is shown that there is an absolute constant C such that any rational
Accepté le :
Publié le :
Jean Bourgain 1
@article{CRMATH_2012__350_15-16_727_0, author = {Jean Bourgain}, title = {Partial quotients and representation of rational numbers}, journal = {Comptes Rendus. Math\'ematique}, pages = {727--730}, publisher = {Elsevier}, volume = {350}, number = {15-16}, year = {2012}, doi = {10.1016/j.crma.2012.09.002}, language = {en}, }
Jean Bourgain. Partial quotients and representation of rational numbers. Comptes Rendus. Mathématique, Volume 350 (2012) no. 15-16, pp. 727-730. doi : 10.1016/j.crma.2012.09.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.09.002/
[1] J. Bourgain, K. Kontorovich, On Zarembaʼs conjecture, preprint, 2011, . | arXiv
[2] Generalization of Selbergʼs 3/16 theorem and affine sieve, Acta Math., Volume 207 (2011) no. 2, pp. 255-290
[3] On the sum and product of continued fractions, Annals of Math., Volume 48 (1947) no. 4
[4] R. Kenyon, private communication.
- Uniform congruence counting for Schottky semigroups in SL2(𝐙), Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2019 (2019) no. 753, p. 89 | DOI:10.1515/crelle-2016-0072
- On Zaremba's conjecture, Annals of Mathematics, Volume 180 (2014) no. 1, p. 137 | DOI:10.4007/annals.2014.180.1.3
Cité par 2 documents. Sources : Crossref
☆ The research was partially supported by NSF grants DMS-0808042 and DMS-0835373.
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier