[Développement asymptotique précis de la constante de Korn dans une poutre mince]
On considère une poutre verticale de hauteur fixée et de petite section εω avec . Soit la constante de Korn dans . On démontre que, lorsque ε tend vers zéro, converge vers une constante positive. On caractérise la limite en fonction de paramètres qui dépendent de ω.
We consider a cylinder having fixed length and small cross-section εω with . Let be the Korn constant of . We show that, as ε tends to zero, converges to a positive constant. We provide a characterization of this constant in terms of certain parameters that depend on ω.
Accepté le :
Publié le :
Roberto Paroni 1 ; Giuseppe Tomassetti 2
@article{CRMATH_2012__350_15-16_749_0, author = {Roberto Paroni and Giuseppe Tomassetti}, title = {Asymptotically exact {Korn's} constant for thin cylindrical domains}, journal = {Comptes Rendus. Math\'ematique}, pages = {749--752}, publisher = {Elsevier}, volume = {350}, number = {15-16}, year = {2012}, doi = {10.1016/j.crma.2012.09.013}, language = {en}, }
TY - JOUR AU - Roberto Paroni AU - Giuseppe Tomassetti TI - Asymptotically exact Kornʼs constant for thin cylindrical domains JO - Comptes Rendus. Mathématique PY - 2012 SP - 749 EP - 752 VL - 350 IS - 15-16 PB - Elsevier DO - 10.1016/j.crma.2012.09.013 LA - en ID - CRMATH_2012__350_15-16_749_0 ER -
Roberto Paroni; Giuseppe Tomassetti. Asymptotically exact Kornʼs constant for thin cylindrical domains. Comptes Rendus. Mathématique, Volume 350 (2012) no. 15-16, pp. 749-752. doi : 10.1016/j.crma.2012.09.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.09.013/
[1] Dimension reduction in variational problems, asymptotic development in Γ-convergence and thin structures in elasticity, Asymptot. Anal., Volume 9 (1994) no. 1, pp. 61-100
[2] Mathematical Elasticity, vol. I, North-Holland, Amsterdam, 1988
[3] Mathematical Elasticity, vol. II, North-Holland, Amsterdam, 1997
[4] A justification of the two-dimensional plate model, J. Mécanique, Volume 18 (1979), pp. 315-344
[5] Kornʼs inequalities for frame type structures and junctions with sharp estimates for the constants, Asymptot. Anal., Volume 8 (1994) no. 1, pp. 1-14
[6] An Introduction to Γ-Convergence, Birkhäuser, Boston, 1993
[7] Thin-walled beams: the case of the rectangular cross-section, J. Elasticity, Volume 76 (2005), pp. 45-66
[8] Thin-walled beams: a derivation of Vlassov theory via Γ-convergence, J. Elasticity, Volume 86 (2007), pp. 263-296
[9] Nonlinear thin-walled beams with rectangular cross-section, part I, Math. Models Methods Appl. Sci., Volume 22 (2012), p. 1150016 (34 pp)
[10] A hierarchy of plate models derived from nonlinear elasticity by Γ-convergence, Arch. Ration. Mech. Anal., Volume 180 (2006) no. 2, pp. 183-236
[11] On the junction of elastic plates and beams, C. R. Acad. Sci. Paris, Ser. I, Volume 335 (2002) no. 8, pp. 717-722
[12] A new model for thin plates with rapidly varying thickness: II. A convergence proof, Quart. Appl. Math., Volume 43 (1985), pp. 1-22
[13] Die eigenschwingungen eines elastichen korpers mit ruhender oberflache, Akad. Wiss. Munich, Math. Phys. Kl., Berichte, Volume 36 (1906)
[14] Convergence of displacements and stresses in linearly elastic slender rods as the thickness goes to zero, Asymptot. Anal., Volume 10 (1995), pp. 367-402
[15] Korn inequalities that are asymptotically exact for thin domains, Vestnik S.-Peterburg. Univ. Mat. Mekh. Astronom., Volume 2 (1992), pp. 19-24 (113–114)
[16] Kornʼs inequalities for junctions of spatial bodies and thin rods, Math. Methods Appl. Sci., Volume 20 (1997), pp. 219-243
[17] On Kornʼs second inequality, RAIRO, Volume 15 (1981), pp. 237-248
[18] The equations of motion of a plate with residual stress, Meccanica, Volume 41 (2006), pp. 1-21
[19] Theory of linearly elastic residually stressed plates, Math. Mech. Solids, Volume 11 (2006) no. 2, pp. 137-159
[20] R. Paroni, G. Tomassetti, On Kornʼs constant for thin cylindrical domains, in preparation.
[21] The Reissner–Mindlin plate theory via Γ-convergence, C. R. Acad. Sci. Paris, Ser. I, Volume 343 (2006) no. 6, pp. 437-440
[22] A justification of the Reissner–Mindlin plate theory through variational convergence, Anal. Appl., Volume 5 (2007) no. 2, pp. 165-182
[23] A variational model for linearly elastic micropolar plate-like bodies, J. Convex Anal., Volume 15 (2008) no. 4, pp. 677-691
[24] Micropolar linearly elastic rods, Commun. Appl. Anal., Volume 13 (2009) no. 4, pp. 647-657
Cité par Sources :
Commentaires - Politique