Comptes Rendus
Mathematical Analysis/Mathematical Problems in Mechanics
Asymptotically exact Kornʼs constant for thin cylindrical domains
[Développement asymptotique précis de la constante de Korn dans une poutre mince]
Comptes Rendus. Mathématique, Volume 350 (2012) no. 15-16, pp. 749-752.

On considère une poutre verticale Ωε de hauteur fixée et de petite section εω avec ωR2. Soit 1/Kε la constante de Korn dans Ωε. On démontre que, lorsque ε tend vers zéro, Kε/ε2 converge vers une constante positive. On caractérise la limite en fonction de paramètres qui dépendent de ω.

We consider a cylinder Ωε having fixed length and small cross-section εω with ωR2. Let 1/Kε be the Korn constant of Ωε. We show that, as ε tends to zero, Kε/ε2 converges to a positive constant. We provide a characterization of this constant in terms of certain parameters that depend on ω.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2012.09.013

Roberto Paroni 1 ; Giuseppe Tomassetti 2

1 Dipartimento di Architettura e Pianificazione, Università degli Studi di Sassari, 07041 Alghero, Italy
2 Dipartimento di Ingegneria Civile, Università degli Studi di Roma “Tor Vergata”, 00133 Roma, Italy
@article{CRMATH_2012__350_15-16_749_0,
     author = {Roberto Paroni and Giuseppe Tomassetti},
     title = {Asymptotically exact {Korn's} constant for thin cylindrical domains},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {749--752},
     publisher = {Elsevier},
     volume = {350},
     number = {15-16},
     year = {2012},
     doi = {10.1016/j.crma.2012.09.013},
     language = {en},
}
TY  - JOUR
AU  - Roberto Paroni
AU  - Giuseppe Tomassetti
TI  - Asymptotically exact Kornʼs constant for thin cylindrical domains
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 749
EP  - 752
VL  - 350
IS  - 15-16
PB  - Elsevier
DO  - 10.1016/j.crma.2012.09.013
LA  - en
ID  - CRMATH_2012__350_15-16_749_0
ER  - 
%0 Journal Article
%A Roberto Paroni
%A Giuseppe Tomassetti
%T Asymptotically exact Kornʼs constant for thin cylindrical domains
%J Comptes Rendus. Mathématique
%D 2012
%P 749-752
%V 350
%N 15-16
%I Elsevier
%R 10.1016/j.crma.2012.09.013
%G en
%F CRMATH_2012__350_15-16_749_0
Roberto Paroni; Giuseppe Tomassetti. Asymptotically exact Kornʼs constant for thin cylindrical domains. Comptes Rendus. Mathématique, Volume 350 (2012) no. 15-16, pp. 749-752. doi : 10.1016/j.crma.2012.09.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.09.013/

[1] G. Anzellotti; S. Baldo; D. Percivale Dimension reduction in variational problems, asymptotic development in Γ-convergence and thin structures in elasticity, Asymptot. Anal., Volume 9 (1994) no. 1, pp. 61-100

[2] P.G. Ciarlet Mathematical Elasticity, vol. I, North-Holland, Amsterdam, 1988

[3] P.G. Ciarlet Mathematical Elasticity, vol. II, North-Holland, Amsterdam, 1997

[4] P.G. Ciarlet; P. Destuynder A justification of the two-dimensional plate model, J. Mécanique, Volume 18 (1979), pp. 315-344

[5] D. Cioranescu; O.A. Oleinik; G. Tronel Kornʼs inequalities for frame type structures and junctions with sharp estimates for the constants, Asymptot. Anal., Volume 8 (1994) no. 1, pp. 1-14

[6] G. Dal Maso An Introduction to Γ-Convergence, Birkhäuser, Boston, 1993

[7] L. Freddi; A. Morassi; R. Paroni Thin-walled beams: the case of the rectangular cross-section, J. Elasticity, Volume 76 (2005), pp. 45-66

[8] L. Freddi; A. Morassi; R. Paroni Thin-walled beams: a derivation of Vlassov theory via Γ-convergence, J. Elasticity, Volume 86 (2007), pp. 263-296

[9] L. Freddi; M.G. Mora; R. Paroni Nonlinear thin-walled beams with rectangular cross-section, part I, Math. Models Methods Appl. Sci., Volume 22 (2012), p. 1150016 (34 pp)

[10] G. Friesecke; R.D. James; S. Müller A hierarchy of plate models derived from nonlinear elasticity by Γ-convergence, Arch. Ration. Mech. Anal., Volume 180 (2006) no. 2, pp. 183-236

[11] A. Gaudiello; R. Monneau; J. Mossino; F. Murat; A. Sili On the junction of elastic plates and beams, C. R. Acad. Sci. Paris, Ser. I, Volume 335 (2002) no. 8, pp. 717-722

[12] R.V. Kohn; M. Vogelius A new model for thin plates with rapidly varying thickness: II. A convergence proof, Quart. Appl. Math., Volume 43 (1985), pp. 1-22

[13] A. Korn Die eigenschwingungen eines elastichen korpers mit ruhender oberflache, Akad. Wiss. Munich, Math. Phys. Kl., Berichte, Volume 36 (1906)

[14] H. Le Dret Convergence of displacements and stresses in linearly elastic slender rods as the thickness goes to zero, Asymptot. Anal., Volume 10 (1995), pp. 367-402

[15] S.A. Nazarov Korn inequalities that are asymptotically exact for thin domains, Vestnik S.-Peterburg. Univ. Mat. Mekh. Astronom., Volume 2 (1992), pp. 19-24 (113–114)

[16] S.A. Nazarov Kornʼs inequalities for junctions of spatial bodies and thin rods, Math. Methods Appl. Sci., Volume 20 (1997), pp. 219-243

[17] J.A. Nitsche On Kornʼs second inequality, RAIRO, Volume 15 (1981), pp. 237-248

[18] R. Paroni The equations of motion of a plate with residual stress, Meccanica, Volume 41 (2006), pp. 1-21

[19] R. Paroni Theory of linearly elastic residually stressed plates, Math. Mech. Solids, Volume 11 (2006) no. 2, pp. 137-159

[20] R. Paroni, G. Tomassetti, On Kornʼs constant for thin cylindrical domains, in preparation.

[21] R. Paroni; P. Podio-Guidugli; G. Tomassetti The Reissner–Mindlin plate theory via Γ-convergence, C. R. Acad. Sci. Paris, Ser. I, Volume 343 (2006) no. 6, pp. 437-440

[22] R. Paroni; P. Podio-Guidugli; G. Tomassetti A justification of the Reissner–Mindlin plate theory through variational convergence, Anal. Appl., Volume 5 (2007) no. 2, pp. 165-182

[23] G. Riey; G. Tomassetti A variational model for linearly elastic micropolar plate-like bodies, J. Convex Anal., Volume 15 (2008) no. 4, pp. 677-691

[24] G. Riey; G. Tomassetti Micropolar linearly elastic rods, Commun. Appl. Anal., Volume 13 (2009) no. 4, pp. 647-657

Cité par Sources :

Commentaires - Politique