Comptes Rendus
Algebraic Geometry
Rational curves on Fermat hypersurfaces
[Courbes rationnelles sur des hypersurfaces de Fermat]
Comptes Rendus. Mathématique, Volume 350 (2012) no. 15-16, pp. 781-784.

Note nous étudions les courbes rationnelles sur les hypersurfaces de Fermat de degré pr+1 dans Pkpr+1, où k est un corps algébriquement clos de caractéristique p. Le point essentiel est la présence du morphisme de Frobenius qui rend le comportement des courbes rationnelles très différent du cas de caractéristique 0. Nous montrons que si N0 est un entier tel que pour tout eN0 il y ait une courbe rationnelle très libre de degré e sur lʼhypersurface de Fermat, alors N0>pr(pr1).

In this note we study rational curves on degree pr+1 Fermat hypersurface in Pkpr+1, where k is an algebraically closed field of characteristic p. The key point is that the presence of Frobenius morphism makes the behavior of rational curves to be very different from that of characteristic 0. We show that if there exists N0 such that for all eN0 there is a degree e very free rational curve on X, then N0>pr(pr1).

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2012.09.015

Mingmin Shen 1

1 DPMMS, University of Cambridge, Wilberforce Road, Cambridge CB3 0WB, UK
@article{CRMATH_2012__350_15-16_781_0,
     author = {Mingmin Shen},
     title = {Rational curves on {Fermat} hypersurfaces},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {781--784},
     publisher = {Elsevier},
     volume = {350},
     number = {15-16},
     year = {2012},
     doi = {10.1016/j.crma.2012.09.015},
     language = {en},
}
TY  - JOUR
AU  - Mingmin Shen
TI  - Rational curves on Fermat hypersurfaces
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 781
EP  - 784
VL  - 350
IS  - 15-16
PB  - Elsevier
DO  - 10.1016/j.crma.2012.09.015
LA  - en
ID  - CRMATH_2012__350_15-16_781_0
ER  - 
%0 Journal Article
%A Mingmin Shen
%T Rational curves on Fermat hypersurfaces
%J Comptes Rendus. Mathématique
%D 2012
%P 781-784
%V 350
%N 15-16
%I Elsevier
%R 10.1016/j.crma.2012.09.015
%G en
%F CRMATH_2012__350_15-16_781_0
Mingmin Shen. Rational curves on Fermat hypersurfaces. Comptes Rendus. Mathématique, Volume 350 (2012) no. 15-16, pp. 781-784. doi : 10.1016/j.crma.2012.09.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.09.015/

[1] T. Bridges; R. Datta; J. Eddy; M. Newman; J. Yu Free and very free morphisms into a Fermat hypersurface | arXiv

[2] F. Campana Connexité rationnelle des variétés de Fano, Ann. Sci. E.N.S., Volume 25 (1992), pp. 539-545

[3] D. Conduché, Courbes rationnelles et hypersurfaces de lʼespace projectif, PhD thesis, Université Louis Pasteur, 2006; Available at http://www.math.ens.fr/~debarre/conduche.pdf.

[4] J. Kollár Rational Curves on Algebraic Varieties, Springer, 1996

[5] J. Kollár; Y. Miyaoka; S. Mori Rational connectedness and boundedness of Fano manifolds, J. Diff. Geom., Volume 36 (1992), pp. 765-769

[6] Y. Zhu Fano hypersurfaces in positive characteristic, 2011 (preprint) | arXiv

Cité par Sources :

Commentaires - Politique