In this Note we introduce new definition of Hodge structures and show that -Hodge structures are determined by -linear operators that are annihilated by the Weierstrass σ-function.
Dans cette Note, nous introduisons une nouvelle définition des structures de Hodge et démontrons que les structures de Hodge sur sont déterminées par des transformations -linéaires qui sont des zéros de la fonction σ de Weierstrass.
Accepted:
Published online:
Grzegorz Banaszak 1; Jan Milewski 2
@article{CRMATH_2012__350_15-16_777_0,
author = {Grzegorz Banaszak and Jan Milewski},
title = {Hodge structures and {Weierstrass} \protect\emph{\ensuremath{\sigma}}-function},
journal = {Comptes Rendus. Math\'ematique},
pages = {777--780},
year = {2012},
publisher = {Elsevier},
volume = {350},
number = {15-16},
doi = {10.1016/j.crma.2012.09.012},
language = {en},
}
Grzegorz Banaszak; Jan Milewski. Hodge structures and Weierstrass σ-function. Comptes Rendus. Mathématique, Volume 350 (2012) no. 15-16, pp. 777-780. doi: 10.1016/j.crma.2012.09.012
[1] Hodge structures in topological quantum mechanics, J. Phys. Conf. Ser., Volume 213 (2010), p. 012017
[2] A survey of the Hodge conjecture for abelian varieties (J. Lewis, ed.), A Survey of the Hodge Conjecture, American Mathematical Society, 1999, pp. 297-356 (Appendix B)
[3] Holomorphons and the standard almost complex structure on , Comment. Math., Volume XLVI (2006) no. 2, pp. 245-254
[4] Holomorphons on spheres, Comment. Math., Volume B XLVIII (2008) no. 2, pp. 13-22
[5] Mixed Hodge Structures, Ergeb. Math. Grenzgeb., vol. 52, Springer, 2008
Cited by Sources:
Comments - Policy
