[Probabilité de transition pour de multiples croisements évités avec un petit écart via la méthode BKW exacte et lʼapproche microlocale]
In this Note, we study the adiabatic transition probability for a two-level system in the case of a finite number of avoided crossings. More precisely, we investigate a global change of bases of a first order differential system with respect to a semiclassical “adiabatic” parameter (
Dans cette Note, nous intéressons à la probabilité de transition adiabatique dʼun système à deux niveaux dans le cas dʼun nombre fini de croisements évités. Plus précisément, nous étudions un changement global des bases dʼun système différentiel du premier ordre par rapport à un paramètre semiclassique “adiabatique” (
Accepté le :
Publié le :
Takuya Watanabe 1 ; Maher Zerzeri 2
@article{CRMATH_2012__350_17-18_841_0, author = {Takuya Watanabe and Maher Zerzeri}, title = {Transition probability for multiple avoided crossings with a small gap through an exact {WKB} method and a microlocal approach}, journal = {Comptes Rendus. Math\'ematique}, pages = {841--844}, publisher = {Elsevier}, volume = {350}, number = {17-18}, year = {2012}, doi = {10.1016/j.crma.2012.10.005}, language = {en}, }
TY - JOUR AU - Takuya Watanabe AU - Maher Zerzeri TI - Transition probability for multiple avoided crossings with a small gap through an exact WKB method and a microlocal approach JO - Comptes Rendus. Mathématique PY - 2012 SP - 841 EP - 844 VL - 350 IS - 17-18 PB - Elsevier DO - 10.1016/j.crma.2012.10.005 LA - en ID - CRMATH_2012__350_17-18_841_0 ER -
%0 Journal Article %A Takuya Watanabe %A Maher Zerzeri %T Transition probability for multiple avoided crossings with a small gap through an exact WKB method and a microlocal approach %J Comptes Rendus. Mathématique %D 2012 %P 841-844 %V 350 %N 17-18 %I Elsevier %R 10.1016/j.crma.2012.10.005 %G en %F CRMATH_2012__350_17-18_841_0
Takuya Watanabe; Maher Zerzeri. Transition probability for multiple avoided crossings with a small gap through an exact WKB method and a microlocal approach. Comptes Rendus. Mathématique, Volume 350 (2012) no. 17-18, pp. 841-844. doi : 10.1016/j.crma.2012.10.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.10.005/
[1] The microlocal Landau–Zener formula, Ann. Inst. Henri Poincaré, Volume 71 (1999), pp. 95-127
[2] Semiclassical representation of the scattering matrix by a Feynman integral, Comm. Math. Phys., Volume 198 (1998) no. 2, pp. 407-425
[3] Semiclassical resonances for a two-level Schrödinger operator with a conical intersection, Asymptot. Anal., Volume 65 (2009) no. 1–2, pp. 17-58
[4] Precise estimates of tunneling and eigenvalues near a potential barrier, J. Differential Equations, Volume 42 (1988), pp. 149-177
[5] Proof of the Landau–Zener formula in an adiabatic limit with small eigenvalue gaps, Comm. Math. Phys., Volume 136 (1991) no. 4, pp. 33-49
[6] G.-A. Hagedorn, A. Joye, Recent results on non-adiabatic transitions in quantum mechanics, in: Proceedings of the 2005 UAB International Conference on Differential Equations and Mathematical Physics, Birmingham, Alabama, March 29–April 2, 2005.
[7] Semiclassical analysis for Harperʼs equation, III. Cantor structure of the spectrum, Mém. Soc. Math. France, Volume 39 (1989), pp. 1-124
[8] Proof of the Landau–Zener formula, Asymptot. Anal., Volume 9 (1994), pp. 209-258
[9] Interferences in adiabatic transition probabilities mediated by Stokes lines, Phys. Rev. A, Volume 44 (1991), pp. 4280-4295
[10] Precise exponential estimates in adiabatic theory, J. Math. Phys., Volume 35 (1994), pp. 3889-3915
[11] Landau–Zener transitions for eigenvalue avoided crossings, Asymptot. Anal., Volume 37 (2004) no. 3–4, pp. 293-328
[12] Adiabatic transition probability for a tangential crossing, Hiroshima Math. J., Volume 36 (2006) no. 3, pp. 443-468
[13] Non-adiabatic crossing of energy levels, Proc. R. Soc. London A, Volume 137 (1932), pp. 696-702
Cité par Sources :
Commentaires - Politique