[Probabilité de transition pour de multiples croisements évités avec un petit écart via la méthode BKW exacte et lʼapproche microlocale]
Dans cette Note, nous intéressons à la probabilité de transition adiabatique dʼun système à deux niveaux dans le cas dʼun nombre fini de croisements évités. Plus précisément, nous étudions un changement global des bases dʼun système différentiel du premier ordre par rapport à un paramètre semiclassique “adiabatique” () et un paramètre dʼinteraction (). Nous obtenons les différents comportements asymptotiques au moyen dʼune méthode BKW exacte et une analyse microlocale en fonction de la corrélation entre les deux paramètres.
In this Note, we study the adiabatic transition probability for a two-level system in the case of a finite number of avoided crossings. More precisely, we investigate a global change of bases of a first order differential system with respect to a semiclassical “adiabatic” parameter () and an interaction parameter (). We obtain its asymptotic behaviors by means of an exact WKB method and a microlocal analysis according to the interrelation of the two parameters.
Accepté le :
Publié le :
Takuya Watanabe 1 ; Maher Zerzeri 2
@article{CRMATH_2012__350_17-18_841_0, author = {Takuya Watanabe and Maher Zerzeri}, title = {Transition probability for multiple avoided crossings with a small gap through an exact {WKB} method and a microlocal approach}, journal = {Comptes Rendus. Math\'ematique}, pages = {841--844}, publisher = {Elsevier}, volume = {350}, number = {17-18}, year = {2012}, doi = {10.1016/j.crma.2012.10.005}, language = {en}, }
TY - JOUR AU - Takuya Watanabe AU - Maher Zerzeri TI - Transition probability for multiple avoided crossings with a small gap through an exact WKB method and a microlocal approach JO - Comptes Rendus. Mathématique PY - 2012 SP - 841 EP - 844 VL - 350 IS - 17-18 PB - Elsevier DO - 10.1016/j.crma.2012.10.005 LA - en ID - CRMATH_2012__350_17-18_841_0 ER -
%0 Journal Article %A Takuya Watanabe %A Maher Zerzeri %T Transition probability for multiple avoided crossings with a small gap through an exact WKB method and a microlocal approach %J Comptes Rendus. Mathématique %D 2012 %P 841-844 %V 350 %N 17-18 %I Elsevier %R 10.1016/j.crma.2012.10.005 %G en %F CRMATH_2012__350_17-18_841_0
Takuya Watanabe; Maher Zerzeri. Transition probability for multiple avoided crossings with a small gap through an exact WKB method and a microlocal approach. Comptes Rendus. Mathématique, Volume 350 (2012) no. 17-18, pp. 841-844. doi : 10.1016/j.crma.2012.10.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.10.005/
[1] The microlocal Landau–Zener formula, Ann. Inst. Henri Poincaré, Volume 71 (1999), pp. 95-127
[2] Semiclassical representation of the scattering matrix by a Feynman integral, Comm. Math. Phys., Volume 198 (1998) no. 2, pp. 407-425
[3] Semiclassical resonances for a two-level Schrödinger operator with a conical intersection, Asymptot. Anal., Volume 65 (2009) no. 1–2, pp. 17-58
[4] Precise estimates of tunneling and eigenvalues near a potential barrier, J. Differential Equations, Volume 42 (1988), pp. 149-177
[5] Proof of the Landau–Zener formula in an adiabatic limit with small eigenvalue gaps, Comm. Math. Phys., Volume 136 (1991) no. 4, pp. 33-49
[6] G.-A. Hagedorn, A. Joye, Recent results on non-adiabatic transitions in quantum mechanics, in: Proceedings of the 2005 UAB International Conference on Differential Equations and Mathematical Physics, Birmingham, Alabama, March 29–April 2, 2005.
[7] Semiclassical analysis for Harperʼs equation, III. Cantor structure of the spectrum, Mém. Soc. Math. France, Volume 39 (1989), pp. 1-124
[8] Proof of the Landau–Zener formula, Asymptot. Anal., Volume 9 (1994), pp. 209-258
[9] Interferences in adiabatic transition probabilities mediated by Stokes lines, Phys. Rev. A, Volume 44 (1991), pp. 4280-4295
[10] Precise exponential estimates in adiabatic theory, J. Math. Phys., Volume 35 (1994), pp. 3889-3915
[11] Landau–Zener transitions for eigenvalue avoided crossings, Asymptot. Anal., Volume 37 (2004) no. 3–4, pp. 293-328
[12] Adiabatic transition probability for a tangential crossing, Hiroshima Math. J., Volume 36 (2006) no. 3, pp. 443-468
[13] Non-adiabatic crossing of energy levels, Proc. R. Soc. London A, Volume 137 (1932), pp. 696-702
Cité par Sources :
Commentaires - Politique