Comptes Rendus
Géométrie analytique/Topologie
Lʼindice topologique des champs de vecteurs sur les intersections complètes quasi-homogènes
[The topological index of vector fields at quasihomogeneous complete intersections]
Comptes Rendus. Mathématique, Volume 350 (2012) no. 19-20, pp. 911-916.

In this note an elementary method for computing the topological index of a vector field at a quasihomogeneous isolated complete intersection singularity is described. It is based on a variant of the De Rham lemma for complete intersections, which is used for calculation of the homological index of vectors fields introduced by X. Gómez-Mont.

Cette note décrit une méthode élémentaire pour calculer lʼindice topologique dʼun champ de vecteurs en une singularité isolée dʼintersection complète quasi-homogène. La méthode est basée sur une variante du lemme de De Rham pour les intersections complètes, qui est utilisée pour calculer lʼindice homologique des champs de vecteurs introduit par X. Gómez-Mont.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2012.10.017

Alexandre G. Aleksandrov 1

1 Institut du contrôle automatique de lʼAcadémie des sciences de Russie, 65, rue Profsoyuznaya, GSP-7, Moscou 117997, Fédération de Russie
@article{CRMATH_2012__350_19-20_911_0,
     author = {Alexandre G. Aleksandrov},
     title = {L'indice topologique des champs de vecteurs sur les intersections compl\`etes quasi-homog\`enes},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {911--916},
     publisher = {Elsevier},
     volume = {350},
     number = {19-20},
     year = {2012},
     doi = {10.1016/j.crma.2012.10.017},
     language = {fr},
}
TY  - JOUR
AU  - Alexandre G. Aleksandrov
TI  - Lʼindice topologique des champs de vecteurs sur les intersections complètes quasi-homogènes
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 911
EP  - 916
VL  - 350
IS  - 19-20
PB  - Elsevier
DO  - 10.1016/j.crma.2012.10.017
LA  - fr
ID  - CRMATH_2012__350_19-20_911_0
ER  - 
%0 Journal Article
%A Alexandre G. Aleksandrov
%T Lʼindice topologique des champs de vecteurs sur les intersections complètes quasi-homogènes
%J Comptes Rendus. Mathématique
%D 2012
%P 911-916
%V 350
%N 19-20
%I Elsevier
%R 10.1016/j.crma.2012.10.017
%G fr
%F CRMATH_2012__350_19-20_911_0
Alexandre G. Aleksandrov. Lʼindice topologique des champs de vecteurs sur les intersections complètes quasi-homogènes. Comptes Rendus. Mathématique, Volume 350 (2012) no. 19-20, pp. 911-916. doi : 10.1016/j.crma.2012.10.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.10.017/

[1] A.G. Aleksandrov The de Rham complex of a quasihomogeneous complete intersection, Funct. Anal. Appl., Volume 17 (1983) no. 1, pp. 48-49

[2] A.G. Aleksandrov Cohomology of a quasihomogeneous complete intersection, Math. USSR Izv., Volume 26 (1986), pp. 437-477

[3] A.G. Aleksandrov On the De Rham complex of nonisolated singularities, Funct. Anal. Appl., Volume 22 (1988) no. 2, pp. 131-133

[4] A.G. Aleksandrov Vector fields on a complete intersection, Funct. Anal. Appl., Volume 25 (1991) no. 4, pp. 283-284

[5] A.G. Aleksandrov The index of vector fields and logarithmic differential forms, Funct. Anal. Appl., Volume 39 (2005) no. 4, pp. 245-255

[6] D. Barlet Le faisceau ωX sur un espace analytique X de dimension pure, Lecture Notes in Math., vol. 670, Springer-Verlag, 1978, pp. 187-204

[7] H.-Ch. Graf von Bothmer; W. Ebeling; X. Gómez-Mont An algebraic formula for the index of a vector field on an isolated complete intersection singularity, Ann. Inst. Fourier (Grenoble), Volume 58 (2008) no. 5, pp. 1761-1783

[8] V.I. Danilov Geometry of toric varieties, Russian Math. Surveys, Volume 33 (1978) no. 2, pp. 97-154 translation from Uspekhi Mat. Nauk, 33, 2(200), 1978, pp. 85-134

[9] L. Giraldo; X. Gómez-Mont; P. Mardešić On the index of vector fields tangent to hypersurfaces with non–isolated singularities, J. Lond. Math. Soc. (2), Volume 65 (2002) no. 2, pp. 418-438

[10] X. Gómez-Mont An algebraic formula for the index of a vector field on a hypersurface with an isolated singularity, J. Algebraic Geom., Volume 7 (1998), pp. 731-752

[11] X. Gómez-Mont; J. Seade; A. Verjovski The index of a holomorphic flow with an isolated singularity, Math. Ann., Volume 291 (1991), pp. 737-751

[12] G.-M. Greuel Der Gauß–Manin–Zusammenhang isolierter Singularitäten von vollständigen Durchscnitten, Math. Ann., Volume 214 (1975) no. 1, pp. 235-266

[13] G.-M. Greuel; H. Hamm Invarianten quasihomogener vollständiger Durchschnitte, Invent. Math., Volume 49 (1978) no. 1, pp. 67-86

[14] A. Grothendieck Local Cohomology, Lecture Notes in Math., vol. 41, Springer-Verlag, Berlin–Heidelberg–New York, 1967

[15] O. Klehn Real and complex indices of vector fields on complete intersection curves with isolated singularity, Compos. Math., Volume 141 (2005), pp. 525-540

[16] A.G. Kushnirenko Newton polyhedron and Milnor numbers, Funct. Anal. Appl., Volume 9 (1975), pp. 71-72

[17] K. Lebelt Torsion äußerer Potenzen von Moduln der homologischen Dimension 1, Math. Ann., Volume 211 (1974) no. 1, pp. 183-197

[18] D. Lehmann; M. Soarès; T. Suwa On the index of a holomorphic vector field tangent to a singular variety, Bol. Soc. Bras. Mat., Volume 26 (1995), pp. 183-199

[19] D. Lehmann; T. Suwa Residues of holomorphic vector fields on singular varieties (J. Mozo Fernández, ed.), Ecuaciones diferenciales, Singularidades, Universidad de Valladolid, 1997, pp. 159-182

[20] I. Naruki Some remarks on isolated singularities and their application to algebraic manifolds, Publ. RIMS Kyoto Univ., Volume 13 (1977), pp. 17-46

Cited by Sources:

Comments - Policy