[The topological index of vector fields at quasihomogeneous complete intersections]
In this note an elementary method for computing the topological index of a vector field at a quasihomogeneous isolated complete intersection singularity is described. It is based on a variant of the De Rham lemma for complete intersections, which is used for calculation of the homological index of vectors fields introduced by X. Gómez-Mont.
Cette note décrit une méthode élémentaire pour calculer lʼindice topologique dʼun champ de vecteurs en une singularité isolée dʼintersection complète quasi-homogène. La méthode est basée sur une variante du lemme de De Rham pour les intersections complètes, qui est utilisée pour calculer lʼindice homologique des champs de vecteurs introduit par X. Gómez-Mont.
Accepted:
Published online:
Alexandre G. Aleksandrov 1
@article{CRMATH_2012__350_19-20_911_0, author = {Alexandre G. Aleksandrov}, title = {L'indice topologique des champs de vecteurs sur les intersections compl\`etes quasi-homog\`enes}, journal = {Comptes Rendus. Math\'ematique}, pages = {911--916}, publisher = {Elsevier}, volume = {350}, number = {19-20}, year = {2012}, doi = {10.1016/j.crma.2012.10.017}, language = {fr}, }
TY - JOUR AU - Alexandre G. Aleksandrov TI - Lʼindice topologique des champs de vecteurs sur les intersections complètes quasi-homogènes JO - Comptes Rendus. Mathématique PY - 2012 SP - 911 EP - 916 VL - 350 IS - 19-20 PB - Elsevier DO - 10.1016/j.crma.2012.10.017 LA - fr ID - CRMATH_2012__350_19-20_911_0 ER -
Alexandre G. Aleksandrov. Lʼindice topologique des champs de vecteurs sur les intersections complètes quasi-homogènes. Comptes Rendus. Mathématique, Volume 350 (2012) no. 19-20, pp. 911-916. doi : 10.1016/j.crma.2012.10.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.10.017/
[1] The de Rham complex of a quasihomogeneous complete intersection, Funct. Anal. Appl., Volume 17 (1983) no. 1, pp. 48-49
[2] Cohomology of a quasihomogeneous complete intersection, Math. USSR Izv., Volume 26 (1986), pp. 437-477
[3] On the De Rham complex of nonisolated singularities, Funct. Anal. Appl., Volume 22 (1988) no. 2, pp. 131-133
[4] Vector fields on a complete intersection, Funct. Anal. Appl., Volume 25 (1991) no. 4, pp. 283-284
[5] The index of vector fields and logarithmic differential forms, Funct. Anal. Appl., Volume 39 (2005) no. 4, pp. 245-255
[6] Le faisceau sur un espace analytique X de dimension pure, Lecture Notes in Math., vol. 670, Springer-Verlag, 1978, pp. 187-204
[7] An algebraic formula for the index of a vector field on an isolated complete intersection singularity, Ann. Inst. Fourier (Grenoble), Volume 58 (2008) no. 5, pp. 1761-1783
[8] Geometry of toric varieties, Russian Math. Surveys, Volume 33 (1978) no. 2, pp. 97-154 translation from Uspekhi Mat. Nauk, 33, 2(200), 1978, pp. 85-134
[9] On the index of vector fields tangent to hypersurfaces with non–isolated singularities, J. Lond. Math. Soc. (2), Volume 65 (2002) no. 2, pp. 418-438
[10] An algebraic formula for the index of a vector field on a hypersurface with an isolated singularity, J. Algebraic Geom., Volume 7 (1998), pp. 731-752
[11] The index of a holomorphic flow with an isolated singularity, Math. Ann., Volume 291 (1991), pp. 737-751
[12] Der Gauß–Manin–Zusammenhang isolierter Singularitäten von vollständigen Durchscnitten, Math. Ann., Volume 214 (1975) no. 1, pp. 235-266
[13] Invarianten quasihomogener vollständiger Durchschnitte, Invent. Math., Volume 49 (1978) no. 1, pp. 67-86
[14] Local Cohomology, Lecture Notes in Math., vol. 41, Springer-Verlag, Berlin–Heidelberg–New York, 1967
[15] Real and complex indices of vector fields on complete intersection curves with isolated singularity, Compos. Math., Volume 141 (2005), pp. 525-540
[16] Newton polyhedron and Milnor numbers, Funct. Anal. Appl., Volume 9 (1975), pp. 71-72
[17] Torsion äußerer Potenzen von Moduln der homologischen Dimension 1, Math. Ann., Volume 211 (1974) no. 1, pp. 183-197
[18] On the index of a holomorphic vector field tangent to a singular variety, Bol. Soc. Bras. Mat., Volume 26 (1995), pp. 183-199
[19] Residues of holomorphic vector fields on singular varieties (J. Mozo Fernández, ed.), Ecuaciones diferenciales, Singularidades, Universidad de Valladolid, 1997, pp. 159-182
[20] Some remarks on isolated singularities and their application to algebraic manifolds, Publ. RIMS Kyoto Univ., Volume 13 (1977), pp. 17-46
Cited by Sources:
Comments - Policy