[Caractérisation des p-groupes finis par leurs multiplicateurs de Schur]
Il est montré dans J.A. Green (1956) [5] que pour tout p-groupe dʼordre on a où . Dans Ya.G. Berkovich (1991) [1], G. Ellis (1999) [4], et X. Zhou (1994) [14] la structure de G a été classifiée par plusieurs auteurs pour . Également, dans A.R. Salemkar et al. (2007) [12] la structure de G est caractérisée lorsque et est abelien élémentaire, mais il y a quelques trous dans la classification complète de ces groupes. Cette Note est consacrée à la caractérisation de la structure de G lorsque , sans restriction aucune et dʼune manière différente, plus directe que les approches de Ya.G. Berkovich (1991) [1], G. Ellis (1999) [4], A.R. Salemkar et al. (2007) [12], et X. Zhou (1994) [14].
It has been proved in J.A. Green (1956) [5] for every p-group of order , , where . In Ya.G. Berkovich (1991) [1], G. Ellis (1999) [4], and X. Zhou (1994) [14], the structure of G has been characterized for by several authors. Also in A.R. Salemkar et al. (2007) [12], the structure of G characterized when and is elementary abelian, but there are some missing points in classifying the structure of these groups. This paper is devoted to classify the structure of G when without any condition and with a short and quite different way to that of Ya.G. Berkovich (1991) [1], G. Ellis (1999) [4], A.R. Salemkar et al. (2007) [12], and X. Zhou (1994) [14].
Accepté le :
Publié le :
Peyman Niroomand 1
@article{CRMATH_2012__350_19-20_867_0, author = {Peyman Niroomand}, title = {Characterizing finite \protect\emph{p}-groups by their {Schur} multipliers}, journal = {Comptes Rendus. Math\'ematique}, pages = {867--870}, publisher = {Elsevier}, volume = {350}, number = {19-20}, year = {2012}, doi = {10.1016/j.crma.2012.10.018}, language = {en}, }
Peyman Niroomand. Characterizing finite p-groups by their Schur multipliers. Comptes Rendus. Mathématique, Volume 350 (2012) no. 19-20, pp. 867-870. doi : 10.1016/j.crma.2012.10.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.10.018/
[1] On the order of the commutator subgroups and the Schur multiplier of a finite p-group, J. Algebra, Volume 144 (1991), pp. 269-272
[2] Some computations of non-abelian tensor products of groups, J. Algebra, Volume 111 (1987), pp. 177-202
[3] Theory of Groups of Finite Order, Dover Publications, New York, 1955
[4] On the Schur multiplier of p-groups, Comm. Algebra, Volume 27 (1999) no. 9, pp. 4173-4177
[5] On the number of automorphisms of a finite group, Proc. Roy. Soc. A, Volume 237 (1956), pp. 574-581
[6] The Schur Multiplier, London Math. Soc. Monogr. (N.S.), vol. 2, 1987
[7] Certain homological functors of 2-generator p-group of class 2, Contemp. Math., Volume 511 (2010), pp. 127-166
[8] On the order of Schur multiplier of non-abelian p-groups, J. Algebra, Volume 322 (2009), pp. 4479-4482
[9] The Schur multiplier of p-groups with large derived subgroup, Arch. Math., Volume 95 (2010), pp. 101-103
[10] P. Niroomand, A note on the Schur multiplier of groups of prime power order, Ric. Mat. (2012), , in press. | DOI
[11] On the exterior degree of finite groups, Comm. Algebra, Volume 39 (2011), pp. 1-9
[12] A remark on the Schur multiplier of p-groups, Comm. Algebra, Volume 35 (2007), pp. 1215-1221
[13] Group Theory, Robert E. Krieger Publishing Co., Huntington, NY, 1975 (corrected reprint of the 1965 edition)
[14] On the order of Schur multipliers of finite p-groups, Comm. Algebra, Volume 1 (1994), pp. 1-8
Cité par Sources :
Commentaires - Politique