[Sur les solutions stables du réseau de Toda non périodique fini]
On étudie les solutions stables du réseau de Toda fini non périodique de type . On obtient des solutions du réseau de Toda de type par décomposition de Gauss. Les solutions ainsi obtenues sont instables car la décomposition de Gauss possède des singularités. Les solutions stables obtenues par la méthode de décomposition de Gauss modifiée sont des fonctions entières sur , elles sont des solutions-solitons.
In this Note we study stable solutions of the finite non-periodic (-type) Toda lattice. Solutions of the -type Toda lattice are obtained by Gauss decomposition. Such solutions are unstable because the Gauss decomposition brings singularities. We obtain stable solutions which are entire functions on as the soliton solutions by modified Gauss decomposition.
Accepté le :
Publié le :
Kaoru Ikeda 1
@article{CRMATH_2012__350_21-22_985_0, author = {Kaoru Ikeda}, title = {On stable solutions of the finite non-periodic {Toda} lattice}, journal = {Comptes Rendus. Math\'ematique}, pages = {985--989}, publisher = {Elsevier}, volume = {350}, number = {21-22}, year = {2012}, doi = {10.1016/j.crma.2012.10.020}, language = {en}, }
Kaoru Ikeda. On stable solutions of the finite non-periodic Toda lattice. Comptes Rendus. Mathématique, Volume 350 (2012) no. 21-22, pp. 985-989. doi : 10.1016/j.crma.2012.10.020. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.10.020/
[1] The Toda lattice I. Existence of integrals, Phys. Rev. B, Volume 9 (1974) no. 3, pp. 1924-1925
[2] On the Toda lattice II. Inverse scattering solution, Prog. Theoret. Phys., Volume 51 (1974), pp. 703-716
[3] Variétés de drapeaux et réseaux de Toda, Math. Z., Volume 208 (1991), pp. 545-556
[4] Direct methods of finding exact solutions of nonlinear evolution equations (R. Miura, ed.), Bäcklund Transformations, Lecture Notes in Math., vol. 515, Springer, 1976, pp. 40-68
[5] The monoidal transformation by Painlevé divisor and resolution of the poles of the Toda lattice, J. Math. Pures Appl., Volume 90 (2008), pp. 329-337
[6] Discrete Lax equations and differential-difference calculus, Astérisque, Volume 123 (1985)
[7] Theory of Nonlinear Lattice, Springer Series in Solid-State Science, vol. 20, Springer-Verlag, Berlin, New York, 1981
Cité par Sources :
Commentaires - Politique