[Sur les solutions stables du réseau de Toda non périodique fini]
On étudie les solutions stables du réseau de Toda fini non périodique de type
In this Note we study stable solutions of the finite non-periodic (
Accepté le :
Publié le :
Kaoru Ikeda 1
@article{CRMATH_2012__350_21-22_985_0, author = {Kaoru Ikeda}, title = {On stable solutions of the finite non-periodic {Toda} lattice}, journal = {Comptes Rendus. Math\'ematique}, pages = {985--989}, publisher = {Elsevier}, volume = {350}, number = {21-22}, year = {2012}, doi = {10.1016/j.crma.2012.10.020}, language = {en}, }
Kaoru Ikeda. On stable solutions of the finite non-periodic Toda lattice. Comptes Rendus. Mathématique, Volume 350 (2012) no. 21-22, pp. 985-989. doi : 10.1016/j.crma.2012.10.020. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.10.020/
[1] The Toda lattice I. Existence of integrals, Phys. Rev. B, Volume 9 (1974) no. 3, pp. 1924-1925
[2] On the Toda lattice II. Inverse scattering solution, Prog. Theoret. Phys., Volume 51 (1974), pp. 703-716
[3] Variétés de drapeaux et réseaux de Toda, Math. Z., Volume 208 (1991), pp. 545-556
[4] Direct methods of finding exact solutions of nonlinear evolution equations (R. Miura, ed.), Bäcklund Transformations, Lecture Notes in Math., vol. 515, Springer, 1976, pp. 40-68
[5] The monoidal transformation by Painlevé divisor and resolution of the poles of the Toda lattice, J. Math. Pures Appl., Volume 90 (2008), pp. 329-337
[6] Discrete Lax equations and differential-difference calculus, Astérisque, Volume 123 (1985)
[7] Theory of Nonlinear Lattice, Springer Series in Solid-State Science, vol. 20, Springer-Verlag, Berlin, New York, 1981
Cité par Sources :
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier