Comptes Rendus
Differential Geometry
Zero mean curvature surfaces in L3 containing a light-like line
[Surfaces de courbure moyenne nulle dans L3 contenant des droites de type lumière]
Comptes Rendus. Mathématique, Volume 350 (2012) no. 21-22, pp. 975-978.

Il est bien connu que les surfaces maximales de type espace et les surfaces minimales de type temps dans lʼespace L3 de Lorentz–Minkowski de dimension 3 possèdent en général des singularités. Ces deux types sont caracterisés comme des surfaces de courbure moyenne nulle. La Note considère le cas où le lieu des singularités consiste en une droite de type lumière, cette situation nʼayant semble-t-il pas encore été analysée. Dans cette Note, nous donnons de nouveaux exemples de telles surfaces.

It is well known that space-like maximal surfaces and time-like minimal surfaces in Lorentz–Minkowski 3-space L3 have singularities (i.e. points where the induced metric degenerates) in general. We are interested in the case where the singular set consists of a light-like line, since this case has not been analyzed before. In this Note, we give new examples of such surfaces.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2012.10.024

S. Fujimori 1 ; Y.W. Kim 2 ; S.-E. Koh 3 ; W. Rossman 4 ; H. Shin 5 ; H. Takahashi 6 ; M. Umehara 7 ; K. Yamada 8 ; S.-D. Yang 2

1 Department of Mathematics, Faculty of Science, Okayama University, Okayama 700-8530, Japan
2 Department of Mathematics, Korea University, Seoul 136-701, Republic of Korea
3 Department of Mathematics, Konkuk University, Seoul 143-701, Republic of Korea
4 Department of Mathematics, Faculty of Science, Kobe University, Kobe 657-8501, Japan
5 Department of Mathematics, Chung-Ang University, Seoul 156-756, Republic of Korea
6 Hakuho Girlsʼ High School, Yokohama 230-0074, Japan
7 Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Tokyo 152-8552, Japan
8 Department of Mathematics, Tokyo Institute of Technology, Tokyo 152-8551, Japan
@article{CRMATH_2012__350_21-22_975_0,
     author = {S. Fujimori and Y.W. Kim and S.-E. Koh and W. Rossman and H. Shin and H. Takahashi and M. Umehara and K. Yamada and S.-D. Yang},
     title = {Zero mean curvature surfaces in $ {\mathbf{L}}^{3}$ containing a light-like line},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {975--978},
     publisher = {Elsevier},
     volume = {350},
     number = {21-22},
     year = {2012},
     doi = {10.1016/j.crma.2012.10.024},
     language = {en},
}
TY  - JOUR
AU  - S. Fujimori
AU  - Y.W. Kim
AU  - S.-E. Koh
AU  - W. Rossman
AU  - H. Shin
AU  - H. Takahashi
AU  - M. Umehara
AU  - K. Yamada
AU  - S.-D. Yang
TI  - Zero mean curvature surfaces in $ {\mathbf{L}}^{3}$ containing a light-like line
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 975
EP  - 978
VL  - 350
IS  - 21-22
PB  - Elsevier
DO  - 10.1016/j.crma.2012.10.024
LA  - en
ID  - CRMATH_2012__350_21-22_975_0
ER  - 
%0 Journal Article
%A S. Fujimori
%A Y.W. Kim
%A S.-E. Koh
%A W. Rossman
%A H. Shin
%A H. Takahashi
%A M. Umehara
%A K. Yamada
%A S.-D. Yang
%T Zero mean curvature surfaces in $ {\mathbf{L}}^{3}$ containing a light-like line
%J Comptes Rendus. Mathématique
%D 2012
%P 975-978
%V 350
%N 21-22
%I Elsevier
%R 10.1016/j.crma.2012.10.024
%G en
%F CRMATH_2012__350_21-22_975_0
S. Fujimori; Y.W. Kim; S.-E. Koh; W. Rossman; H. Shin; H. Takahashi; M. Umehara; K. Yamada; S.-D. Yang. Zero mean curvature surfaces in $ {\mathbf{L}}^{3}$ containing a light-like line. Comptes Rendus. Mathématique, Volume 350 (2012) no. 21-22, pp. 975-978. doi : 10.1016/j.crma.2012.10.024. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.10.024/

[1] F.J.M. Estudillo; A. Romero Generalized maximal surfaces in Lorentz–Minkowski space L3, Math. Proc. Cambridge Philos. Soc., Volume 111 (1992), pp. 515-524

[2] S. Fujimori, Y.W. Kim, S.-E. Koh, W. Rossman, H.‘Shin, M. Umehara, K. Yamada, S.-D. Yang, Zero mean curvature surfaces in Lorentz–Minkowski 3-space which change type across a light-like line, preprint.

[3] S. Fujimori; W. Rossman; M. Umehara; K. Yamada; S.-D. Yang New maximal surfaces in Minkowski 3-space with arbitrary genus and their cousins in de Sitter 3-space, Results Math., Volume 56 (2009), pp. 41-82

[4] C. Gu The extremal surfaces in the 3-dimensional Minkowski space, Acta Math. Sinica, Volume 1 (1985), pp. 173-180

[5] J. Inoguchi; M. Toda Timelike minimal surfaces via loop groups, Acta Appl. Math., Volume 83 (2004), pp. 313-335

[6] Y.W. Kim; S.-D. Yang A family of maximal surfaces in Lorentz–Minkowski three-space, Proc. Amer. Math. Soc., Volume 134 (2006), pp. 3379-3390

[7] Y.W. Kim; S.-D. Yang Prescribing singularities of maximal surfaces via a singular Björling representation formula, J. Geom. Phys., Volume 57 (2007), pp. 2167-2177

[8] Y.W. Kim; S.-E. Koh; H. Shin; S.-D. Yang Spacelike maximal surfaces, timelike minimal surfaces, and Björling representation formulae, J. Korean Math. Soc., Volume 48 (2011), pp. 1083-1100

[9] V.A. Klyachin Zero mean curvature surfaces of mixed type in Minkowski space, Izv. Math., Volume 67 (2003), pp. 209-224

[10] O. Kobayashi Maximal surfaces in the 3-dimensional Minkowski space L3, Tokyo J. Math., Volume 6 (1983), pp. 297-309

[11] M. Umehara; K. Yamada Maximal surfaces with singularities in Minkowski space, Hokkaido Math. J., Volume 35 (2006), pp. 13-40

  • Jaeyoung Byeon; Norihisa Ikoma; Andrea Malchiodi; Luciano Mari Existence and Regularity for Prescribed Lorentzian Mean Curvature Hypersurfaces, and the Born–Infeld Model, Annals of PDE, Volume 10 (2024) no. 1 | DOI:10.1007/s40818-023-00167-4
  • S. Fujimori; Y. Kawakami; M. Kokubu; W. Rossman; M. Umehara; K. Yamada; S.-D. Yang Analytic extensions of constant mean curvature one geometric catenoids in de Sitter 3-space, Differential Geometry and its Applications, Volume 84 (2022), p. 101924 | DOI:10.1016/j.difgeo.2022.101924
  • Seher Kaya; Rafael López Classification of zero mean curvature surfaces of separable type in Lorentz-Minkowski space, Tohoku Mathematical Journal, Volume 74 (2022) no. 2 | DOI:10.2748/tmj.20210120a
  • Shintaro Akamine; Hiroki Fujino Reflection principle for lightlike line segments on maximal surfaces, Annals of Global Analysis and Geometry, Volume 59 (2021) no. 1, p. 93 | DOI:10.1007/s10455-020-09743-4
  • Atsufumi Honda; Kentaro Saji; Keisuke Teramoto Mixed type surfaces with bounded Gaussian curvature in three-dimensional Lorentzian manifolds, Advances in Mathematics, Volume 365 (2020), p. 107036 | DOI:10.1016/j.aim.2020.107036
  • S. Akamine; M. Umehara; K. Yamada Improvement of the Bernstein-type theorem for space-like zero mean curvature graphs in Lorentz-Minkowski space using fluid mechanical duality, Proceedings of the American Mathematical Society, Series B, Volume 7 (2020) no. 2, p. 17 | DOI:10.1090/bproc/44
  • Shintaro Akamine; Rahul Kumar Singh Wick rotations of solutions to the minimal surface equation, the zero mean curvature equation and the Born–Infeld equation, Proceedings - Mathematical Sciences, Volume 129 (2019) no. 3 | DOI:10.1007/s12044-019-0479-7
  • Shintaro Akamine; Masaaki Umehara; Kotaro Yamada Space-like maximal surfaces containing entire null lines in Lorentz-Minkowski 3-space, Proceedings of the Japan Academy, Series A, Mathematical Sciences, Volume 95 (2019) no. 9 | DOI:10.3792/pjaa.95.97
  • M. Umehara; K. Yamada Hypersurfaces with Light-Like Points in a Lorentzian Manifold, The Journal of Geometric Analysis, Volume 29 (2019) no. 4, p. 3405 | DOI:10.1007/s12220-018-00118-7
  • Ruihua Gao; Faxing Wang; Xiaodan Zhang; Yuguang Wang Retraction Note to: Extremal surface with the light-like line in Minkowski space R 1 + ( 1 + 1 ) R1+(1+1), Boundary Value Problems, Volume 2018 (2018) no. 1 | DOI:10.1186/s13661-018-0994-y
  • S. Fujimori; U. Hertrich-Jeromin; M. Kokubu; M. Umehara; K. Yamada Quadrics and Scherk towers, Monatshefte für Mathematik, Volume 186 (2018) no. 2, p. 249 | DOI:10.1007/s00605-017-1075-5
  • Ruihua Gao; Faxing Wang; Xiaodan Zhang; Yuguang Wang RETRACTED ARTICLE: Extremal surface with the light-like line in Minkowski space R 1 + ( 1 + 1 ) R1+(1+1), Boundary Value Problems, Volume 2017 (2017) no. 1 | DOI:10.1186/s13661-017-0786-9
  • Shintaro AKAMINE CAUSAL CHARACTERS OF ZERO MEAN CURVATURE SURFACES OF RIEMANN TYPE IN THE LORENTZ-MINKOWSKI 3-SPACE, Kyushu Journal of Mathematics, Volume 71 (2017) no. 2, p. 211 | DOI:10.2206/kyushujm.71.211
  • Masaaki Umehara; Kotaro Yamada Surfaces With Light-Like Points In Lorentz-Minkowski 3-Space With Applications, Lorentzian Geometry and Related Topics, Volume 211 (2017), p. 253 | DOI:10.1007/978-3-319-66290-9_14
  • Ningan Lai; Jianli Liu Global weak and smooth solutions of the equation for timelike extremal surface in Minkowski space, Journal of Mathematical Analysis and Applications, Volume 428 (2015) no. 2, p. 1135 | DOI:10.1016/j.jmaa.2015.02.088
  • Shoichi Fijimori; Wayne Rossman; Masaaki Umehara; Kotaro Yamada; Seong-Deog Yang Embedded triply periodic zero mean curvature surfaces of mixed type in Lorentz-Minkowski 3-space, Michigan Mathematical Journal, Volume 63 (2014) no. 1 | DOI:10.1307/mmj/1395234364

Cité par 16 documents. Sources : Crossref

Commentaires - Politique