[Surfaces de courbure moyenne nulle dans
It is well known that space-like maximal surfaces and time-like minimal surfaces in Lorentz–Minkowski 3-space
Il est bien connu que les surfaces maximales de type espace et les surfaces minimales de type temps dans lʼespace
Accepté le :
Publié le :
S. Fujimori 1 ; Y.W. Kim 2 ; S.-E. Koh 3 ; W. Rossman 4 ; H. Shin 5 ; H. Takahashi 6 ; M. Umehara 7 ; K. Yamada 8 ; S.-D. Yang 2
@article{CRMATH_2012__350_21-22_975_0, author = {S. Fujimori and Y.W. Kim and S.-E. Koh and W. Rossman and H. Shin and H. Takahashi and M. Umehara and K. Yamada and S.-D. Yang}, title = {Zero mean curvature surfaces in $ {\mathbf{L}}^{3}$ containing a light-like line}, journal = {Comptes Rendus. Math\'ematique}, pages = {975--978}, publisher = {Elsevier}, volume = {350}, number = {21-22}, year = {2012}, doi = {10.1016/j.crma.2012.10.024}, language = {en}, }
TY - JOUR AU - S. Fujimori AU - Y.W. Kim AU - S.-E. Koh AU - W. Rossman AU - H. Shin AU - H. Takahashi AU - M. Umehara AU - K. Yamada AU - S.-D. Yang TI - Zero mean curvature surfaces in $ {\mathbf{L}}^{3}$ containing a light-like line JO - Comptes Rendus. Mathématique PY - 2012 SP - 975 EP - 978 VL - 350 IS - 21-22 PB - Elsevier DO - 10.1016/j.crma.2012.10.024 LA - en ID - CRMATH_2012__350_21-22_975_0 ER -
%0 Journal Article %A S. Fujimori %A Y.W. Kim %A S.-E. Koh %A W. Rossman %A H. Shin %A H. Takahashi %A M. Umehara %A K. Yamada %A S.-D. Yang %T Zero mean curvature surfaces in $ {\mathbf{L}}^{3}$ containing a light-like line %J Comptes Rendus. Mathématique %D 2012 %P 975-978 %V 350 %N 21-22 %I Elsevier %R 10.1016/j.crma.2012.10.024 %G en %F CRMATH_2012__350_21-22_975_0
S. Fujimori; Y.W. Kim; S.-E. Koh; W. Rossman; H. Shin; H. Takahashi; M. Umehara; K. Yamada; S.-D. Yang. Zero mean curvature surfaces in $ {\mathbf{L}}^{3}$ containing a light-like line. Comptes Rendus. Mathématique, Volume 350 (2012) no. 21-22, pp. 975-978. doi : 10.1016/j.crma.2012.10.024. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.10.024/
[1] Generalized maximal surfaces in Lorentz–Minkowski space
[2] S. Fujimori, Y.W. Kim, S.-E. Koh, W. Rossman, H.‘Shin, M. Umehara, K. Yamada, S.-D. Yang, Zero mean curvature surfaces in Lorentz–Minkowski 3-space which change type across a light-like line, preprint.
[3] New maximal surfaces in Minkowski 3-space with arbitrary genus and their cousins in de Sitter 3-space, Results Math., Volume 56 (2009), pp. 41-82
[4] The extremal surfaces in the 3-dimensional Minkowski space, Acta Math. Sinica, Volume 1 (1985), pp. 173-180
[5] Timelike minimal surfaces via loop groups, Acta Appl. Math., Volume 83 (2004), pp. 313-335
[6] A family of maximal surfaces in Lorentz–Minkowski three-space, Proc. Amer. Math. Soc., Volume 134 (2006), pp. 3379-3390
[7] Prescribing singularities of maximal surfaces via a singular Björling representation formula, J. Geom. Phys., Volume 57 (2007), pp. 2167-2177
[8] Spacelike maximal surfaces, timelike minimal surfaces, and Björling representation formulae, J. Korean Math. Soc., Volume 48 (2011), pp. 1083-1100
[9] Zero mean curvature surfaces of mixed type in Minkowski space, Izv. Math., Volume 67 (2003), pp. 209-224
[10] Maximal surfaces in the 3-dimensional Minkowski space
[11] Maximal surfaces with singularities in Minkowski space, Hokkaido Math. J., Volume 35 (2006), pp. 13-40
Cité par Sources :
Commentaires - Politique