[Les boules euclidiennes minimisent certains problèmes isopérimétriques avec des poids non radiaux]
In this Note we present the solution of some isoperimetric problems in open convex cones of
Dans cette Note, nous présentons la solution de certains problèmes isopérimétriques dans des cônes convexes de
Accepté le :
Publié le :
Xavier Cabré 1, 2 ; Xavier Ros-Oton 2 ; Joaquim Serra 2
@article{CRMATH_2012__350_21-22_945_0, author = {Xavier Cabr\'e and Xavier Ros-Oton and Joaquim Serra}, title = {Euclidean balls solve some isoperimetric problems with nonradial weights}, journal = {Comptes Rendus. Math\'ematique}, pages = {945--947}, publisher = {Elsevier}, volume = {350}, number = {21-22}, year = {2012}, doi = {10.1016/j.crma.2012.10.031}, language = {en}, }
TY - JOUR AU - Xavier Cabré AU - Xavier Ros-Oton AU - Joaquim Serra TI - Euclidean balls solve some isoperimetric problems with nonradial weights JO - Comptes Rendus. Mathématique PY - 2012 SP - 945 EP - 947 VL - 350 IS - 21-22 PB - Elsevier DO - 10.1016/j.crma.2012.10.031 LA - en ID - CRMATH_2012__350_21-22_945_0 ER -
Xavier Cabré; Xavier Ros-Oton; Joaquim Serra. Euclidean balls solve some isoperimetric problems with nonradial weights. Comptes Rendus. Mathématique, Volume 350 (2012) no. 21-22, pp. 945-947. doi : 10.1016/j.crma.2012.10.031. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.10.031/
[1] Weighted isoperimetric inequalities in cones and applications, Nonlinear Anal., Volume 75 (2012), pp. 5737-5755
[2] Partial differential equations, geometry, and stochastic control, Butl. Soc. Catalana Mat., Volume 15 (2000), pp. 7-27 (in Catalan)
[3] Elliptic PDEs in Probability and Geometry. Symmetry and regularity of solutions, Discrete Contin. Dyn. Syst., Volume 20 (2008), pp. 425-457
[4] X. Cabré, X. Ros-Oton, Regularity of stable solutions up to dimension 7 in domains of double revolution, Comm. Partial Differential Equations, in press, . | DOI
[5] Sobolev and isoperimetric inequalities with monomial weights | arXiv
[6] X. Cabré, X. Ros-Oton, J. Serra, Sharp isoperimetric inequalities via the ABP method, in preparation.
[7] A. Díaz, N. Harman, S. Howe, D. Thompson, Isoperimetric problem in sectors with density, Adv. Geom., in press, . | DOI
[8] Isoperimetric inequality for convex cones, Proc. Amer. Math. Soc., Volume 109 (1990), pp. 477-485
[9] Sharp estimates for solutions to a certain type of singular elliptic boundary value problems in two dimensions, Applicable Anal., Volume 12 (1981), pp. 307-321
[10] Manifolds with density, Notices Amer. Math. Soc., Volume 52 (2005), pp. 853-858
Cité par Sources :
Commentaires - Politique