Comptes Rendus
Partial Differential Equations/Geometry
Euclidean balls solve some isoperimetric problems with nonradial weights
[Les boules euclidiennes minimisent certains problèmes isopérimétriques avec des poids non radiaux]
Comptes Rendus. Mathématique, Volume 350 (2012) no. 21-22, pp. 945-947.

Dans cette Note, nous présentons la solution de certains problèmes isopérimétriques dans des cônes convexes de Rn où le périmètre et le volume sont mesurés par rapport à certains poids non radiaux. Contrairement à ce que lʼon pourrait penser, les boules euclidiennes centrées à lʼorigine (intersectées avec le cône) minimisent le quotient isopérimétrique. Notre résultat sʼapplique aux poids strictement positifs, homogènes et satisfaisant une condition de concavité dans le cône. Lorsque le poids est constant, le résultat a été établi par Lions et Pacella en 1990.

In this Note we present the solution of some isoperimetric problems in open convex cones of Rn in which perimeter and volume are measured with respect to certain nonradial weights. Surprisingly, Euclidean balls centered at the origin (intersected with the convex cone) minimize the isoperimetric quotient. Our result applies to all nonnegative homogeneous weights satisfying a concavity condition in the cone. When the weight is constant, the result was established by Lions and Pacella in 1990.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2012.10.031

Xavier Cabré 1, 2 ; Xavier Ros-Oton 2 ; Joaquim Serra 2

1 ICREA (Institució Catalana de Recerca i Estudis Avançats), Spain
2 Universitat Politècnica de Catalunya, Departament Matemàtica Aplicada I, Avda. Diagonal 647, 08028 Barcelona, Spain
@article{CRMATH_2012__350_21-22_945_0,
     author = {Xavier Cabr\'e and Xavier Ros-Oton and Joaquim Serra},
     title = {Euclidean balls solve some isoperimetric problems with nonradial weights},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {945--947},
     publisher = {Elsevier},
     volume = {350},
     number = {21-22},
     year = {2012},
     doi = {10.1016/j.crma.2012.10.031},
     language = {en},
}
TY  - JOUR
AU  - Xavier Cabré
AU  - Xavier Ros-Oton
AU  - Joaquim Serra
TI  - Euclidean balls solve some isoperimetric problems with nonradial weights
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 945
EP  - 947
VL  - 350
IS  - 21-22
PB  - Elsevier
DO  - 10.1016/j.crma.2012.10.031
LA  - en
ID  - CRMATH_2012__350_21-22_945_0
ER  - 
%0 Journal Article
%A Xavier Cabré
%A Xavier Ros-Oton
%A Joaquim Serra
%T Euclidean balls solve some isoperimetric problems with nonradial weights
%J Comptes Rendus. Mathématique
%D 2012
%P 945-947
%V 350
%N 21-22
%I Elsevier
%R 10.1016/j.crma.2012.10.031
%G en
%F CRMATH_2012__350_21-22_945_0
Xavier Cabré; Xavier Ros-Oton; Joaquim Serra. Euclidean balls solve some isoperimetric problems with nonradial weights. Comptes Rendus. Mathématique, Volume 350 (2012) no. 21-22, pp. 945-947. doi : 10.1016/j.crma.2012.10.031. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.10.031/

[1] F. Brock; F. Chiacchio; A. Mercaldo Weighted isoperimetric inequalities in cones and applications, Nonlinear Anal., Volume 75 (2012), pp. 5737-5755

[2] X. Cabré Partial differential equations, geometry, and stochastic control, Butl. Soc. Catalana Mat., Volume 15 (2000), pp. 7-27 (in Catalan)

[3] X. Cabré Elliptic PDEs in Probability and Geometry. Symmetry and regularity of solutions, Discrete Contin. Dyn. Syst., Volume 20 (2008), pp. 425-457

[4] X. Cabré, X. Ros-Oton, Regularity of stable solutions up to dimension 7 in domains of double revolution, Comm. Partial Differential Equations, in press, . | DOI

[5] X. Cabré; X. Ros-Oton Sobolev and isoperimetric inequalities with monomial weights | arXiv

[6] X. Cabré, X. Ros-Oton, J. Serra, Sharp isoperimetric inequalities via the ABP method, in preparation.

[7] A. Díaz, N. Harman, S. Howe, D. Thompson, Isoperimetric problem in sectors with density, Adv. Geom., in press, . | DOI

[8] P.-L. Lions; F. Pacella Isoperimetric inequality for convex cones, Proc. Amer. Math. Soc., Volume 109 (1990), pp. 477-485

[9] C. Maderna; S. Salsa Sharp estimates for solutions to a certain type of singular elliptic boundary value problems in two dimensions, Applicable Anal., Volume 12 (1981), pp. 307-321

[10] F. Morgan Manifolds with density, Notices Amer. Math. Soc., Volume 52 (2005), pp. 853-858

  • Guozhen Lu; Yansheng Shen; Jianwei Xue; Maochun Zhu Weighted anisotropic isoperimetric inequalities and existence of extremals for singular anisotropic Trudinger-Moser inequalities, Advances in Mathematics, Volume 458 (2024), p. 109949 | DOI:10.1016/j.aim.2024.109949
  • Valentina Franceschi; Andrea Pinamonti; Giorgio Saracco; Giorgio Stefani The Cheeger problem in abstract measure spaces, Journal of the London Mathematical Society, Volume 109 (2024) no. 1 | DOI:10.1112/jlms.12840
  • Valentina Franceschi; Aldo Pratelli; Giorgio Stefani On the Steiner property for planar minimizing clusters. The isotropic case, Communications in Contemporary Mathematics, Volume 25 (2023) no. 05 | DOI:10.1142/s0219199722500407
  • Valentina Franceschi; Aldo Pratelli; Giorgio Stefani On the Steiner property for planar minimizing clusters. The anisotropic case, Journal de l’École polytechnique — Mathématiques, Volume 10 (2023), p. 989 | DOI:10.5802/jep.238
  • Stan Alama; Lia Bronsard; Ihsan Topaloglu; Andres Zuniga A nonlocal isoperimetric problem with density perimeter, Calculus of Variations and Partial Differential Equations, Volume 60 (2021) no. 1 | DOI:10.1007/s00526-020-01865-8
  • Angelo Alvino; Friedemann Brock; Francesco Chiacchio; Anna Mercaldo; Maria Rosaria Posteraro Some isoperimetric inequalities with respect to monomial weights, ESAIM: Control, Optimisation and Calculus of Variations, Volume 27 (2021), p. S3 | DOI:10.1051/cocv/2020054
  • Aldo Pratelli; Giorgio Saracco The ε - εβProperty in the Isoperimetric Problem with Double Density, and the Regularity of Isoperimetric Sets, Advanced Nonlinear Studies, Volume 20 (2020) no. 3, p. 539 | DOI:10.1515/ans-2020-2074
  • A. Alvino; F. Brock; F. Chiacchio; A. Mercaldo; M. R. Posteraro On weighted isoperimetric inequalities with non-radial densities, Applicable Analysis, Volume 98 (2019) no. 10, p. 1935 | DOI:10.1080/00036811.2018.1506106
  • Aldo Pratelli; Giorgio Saracco On the isoperimetric problem with double density, Nonlinear Analysis, Volume 177 (2018), p. 733 | DOI:10.1016/j.na.2018.04.009
  • Xavier Cabré Isoperimetric, Sobolev, and eigenvalue inequalities via the Alexandroff-Bakelman-Pucci method: A survey, Chinese Annals of Mathematics, Series B, Volume 38 (2017) no. 1, p. 201 | DOI:10.1007/s11401-016-1067-0
  • Guoqing He; Peibiao Zhao Weighted quantitative isoperimetric inequalities in the Grushin space R h + 1 Rh+1 with density | x | p |x|p, Journal of Inequalities and Applications, Volume 2017 (2017) no. 1 | DOI:10.1186/s13660-017-1437-5
  • A. Alvino; F. Brock; F. Chiacchio; A. Mercaldo; M.R. Posteraro Some isoperimetric inequalities onRNwith respect to weights |x|, Journal of Mathematical Analysis and Applications, Volume 451 (2017) no. 1, p. 280 | DOI:10.1016/j.jmaa.2017.01.085
  • Guido De Philippis; Giovanni Franzina; Aldo Pratelli Existence of Isoperimetric Sets with Densities “Converging from Below” on RN R N, The Journal of Geometric Analysis, Volume 27 (2017) no. 2, p. 1086 | DOI:10.1007/s12220-016-9711-1
  • Emanuel Milman; Liran Rotem Complemented Brunn–Minkowski inequalities and isoperimetry for homogeneous and non-homogeneous measures, Advances in Mathematics, Volume 262 (2014), p. 867 | DOI:10.1016/j.aim.2014.05.023
  • Antonio Cañete; César Rosales Compact stable hypersurfaces with free boundary in convex solid cones with homogeneous densities, Calculus of Variations and Partial Differential Equations, Volume 51 (2014) no. 3-4, p. 887 | DOI:10.1007/s00526-013-0699-0
  • F. Brock; F. Chiacchio; A. Mercaldo A Weighted Isoperimetric Inequality in an Orthant, Potential Analysis, Volume 41 (2014) no. 1, p. 171 | DOI:10.1007/s11118-013-9367-4
  • Xavier Cabré; Xavier Ros-Oton Sobolev and isoperimetric inequalities with monomial weights, Journal of Differential Equations, Volume 255 (2013) no. 11, p. 4312 | DOI:10.1016/j.jde.2013.08.010

Cité par 17 documents. Sources : Crossref

Commentaires - Politique