[Les boules euclidiennes minimisent certains problèmes isopérimétriques avec des poids non radiaux]
Dans cette Note, nous présentons la solution de certains problèmes isopérimétriques dans des cônes convexes de
In this Note we present the solution of some isoperimetric problems in open convex cones of
Accepté le :
Publié le :
Xavier Cabré 1, 2 ; Xavier Ros-Oton 2 ; Joaquim Serra 2
@article{CRMATH_2012__350_21-22_945_0, author = {Xavier Cabr\'e and Xavier Ros-Oton and Joaquim Serra}, title = {Euclidean balls solve some isoperimetric problems with nonradial weights}, journal = {Comptes Rendus. Math\'ematique}, pages = {945--947}, publisher = {Elsevier}, volume = {350}, number = {21-22}, year = {2012}, doi = {10.1016/j.crma.2012.10.031}, language = {en}, }
TY - JOUR AU - Xavier Cabré AU - Xavier Ros-Oton AU - Joaquim Serra TI - Euclidean balls solve some isoperimetric problems with nonradial weights JO - Comptes Rendus. Mathématique PY - 2012 SP - 945 EP - 947 VL - 350 IS - 21-22 PB - Elsevier DO - 10.1016/j.crma.2012.10.031 LA - en ID - CRMATH_2012__350_21-22_945_0 ER -
Xavier Cabré; Xavier Ros-Oton; Joaquim Serra. Euclidean balls solve some isoperimetric problems with nonradial weights. Comptes Rendus. Mathématique, Volume 350 (2012) no. 21-22, pp. 945-947. doi : 10.1016/j.crma.2012.10.031. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.10.031/
[1] Weighted isoperimetric inequalities in cones and applications, Nonlinear Anal., Volume 75 (2012), pp. 5737-5755
[2] Partial differential equations, geometry, and stochastic control, Butl. Soc. Catalana Mat., Volume 15 (2000), pp. 7-27 (in Catalan)
[3] Elliptic PDEs in Probability and Geometry. Symmetry and regularity of solutions, Discrete Contin. Dyn. Syst., Volume 20 (2008), pp. 425-457
[4] X. Cabré, X. Ros-Oton, Regularity of stable solutions up to dimension 7 in domains of double revolution, Comm. Partial Differential Equations, in press, . | DOI
[5] Sobolev and isoperimetric inequalities with monomial weights | arXiv
[6] X. Cabré, X. Ros-Oton, J. Serra, Sharp isoperimetric inequalities via the ABP method, in preparation.
[7] A. Díaz, N. Harman, S. Howe, D. Thompson, Isoperimetric problem in sectors with density, Adv. Geom., in press, . | DOI
[8] Isoperimetric inequality for convex cones, Proc. Amer. Math. Soc., Volume 109 (1990), pp. 477-485
[9] Sharp estimates for solutions to a certain type of singular elliptic boundary value problems in two dimensions, Applicable Anal., Volume 12 (1981), pp. 307-321
[10] Manifolds with density, Notices Amer. Math. Soc., Volume 52 (2005), pp. 853-858
- Weighted anisotropic isoperimetric inequalities and existence of extremals for singular anisotropic Trudinger-Moser inequalities, Advances in Mathematics, Volume 458 (2024), p. 109949 | DOI:10.1016/j.aim.2024.109949
- The Cheeger problem in abstract measure spaces, Journal of the London Mathematical Society, Volume 109 (2024) no. 1 | DOI:10.1112/jlms.12840
- On the Steiner property for planar minimizing clusters. The isotropic case, Communications in Contemporary Mathematics, Volume 25 (2023) no. 05 | DOI:10.1142/s0219199722500407
- On the Steiner property for planar minimizing clusters. The anisotropic case, Journal de l’École polytechnique — Mathématiques, Volume 10 (2023), p. 989 | DOI:10.5802/jep.238
- A nonlocal isoperimetric problem with density perimeter, Calculus of Variations and Partial Differential Equations, Volume 60 (2021) no. 1 | DOI:10.1007/s00526-020-01865-8
- Some isoperimetric inequalities with respect to monomial weights, ESAIM: Control, Optimisation and Calculus of Variations, Volume 27 (2021), p. S3 | DOI:10.1051/cocv/2020054
- The ε - εβProperty in the Isoperimetric Problem with Double Density, and the Regularity of Isoperimetric Sets, Advanced Nonlinear Studies, Volume 20 (2020) no. 3, p. 539 | DOI:10.1515/ans-2020-2074
- On weighted isoperimetric inequalities with non-radial densities, Applicable Analysis, Volume 98 (2019) no. 10, p. 1935 | DOI:10.1080/00036811.2018.1506106
- On the isoperimetric problem with double density, Nonlinear Analysis, Volume 177 (2018), p. 733 | DOI:10.1016/j.na.2018.04.009
- Isoperimetric, Sobolev, and eigenvalue inequalities via the Alexandroff-Bakelman-Pucci method: A survey, Chinese Annals of Mathematics, Series B, Volume 38 (2017) no. 1, p. 201 | DOI:10.1007/s11401-016-1067-0
- Weighted quantitative isoperimetric inequalities in the Grushin space
R
h
+
1
with density | x | p , Journal of Inequalities and Applications, Volume 2017 (2017) no. 1 | DOI:10.1186/s13660-017-1437-5 - Some isoperimetric inequalities onRNwith respect to weights |x|, Journal of Mathematical Analysis and Applications, Volume 451 (2017) no. 1, p. 280 | DOI:10.1016/j.jmaa.2017.01.085
- Existence of Isoperimetric Sets with Densities “Converging from Below” on
R N, The Journal of Geometric Analysis, Volume 27 (2017) no. 2, p. 1086 | DOI:10.1007/s12220-016-9711-1 - Complemented Brunn–Minkowski inequalities and isoperimetry for homogeneous and non-homogeneous measures, Advances in Mathematics, Volume 262 (2014), p. 867 | DOI:10.1016/j.aim.2014.05.023
- Compact stable hypersurfaces with free boundary in convex solid cones with homogeneous densities, Calculus of Variations and Partial Differential Equations, Volume 51 (2014) no. 3-4, p. 887 | DOI:10.1007/s00526-013-0699-0
- A Weighted Isoperimetric Inequality in an Orthant, Potential Analysis, Volume 41 (2014) no. 1, p. 171 | DOI:10.1007/s11118-013-9367-4
- Sobolev and isoperimetric inequalities with monomial weights, Journal of Differential Equations, Volume 255 (2013) no. 11, p. 4312 | DOI:10.1016/j.jde.2013.08.010
Cité par 17 documents. Sources : Crossref
Commentaires - Politique