Comptes Rendus
Partial Differential Equations/Geometry
Euclidean balls solve some isoperimetric problems with nonradial weights
Comptes Rendus. Mathématique, Volume 350 (2012) no. 21-22, pp. 945-947.

In this Note we present the solution of some isoperimetric problems in open convex cones of Rn in which perimeter and volume are measured with respect to certain nonradial weights. Surprisingly, Euclidean balls centered at the origin (intersected with the convex cone) minimize the isoperimetric quotient. Our result applies to all nonnegative homogeneous weights satisfying a concavity condition in the cone. When the weight is constant, the result was established by Lions and Pacella in 1990.

Dans cette Note, nous présentons la solution de certains problèmes isopérimétriques dans des cônes convexes de Rn où le périmètre et le volume sont mesurés par rapport à certains poids non radiaux. Contrairement à ce que lʼon pourrait penser, les boules euclidiennes centrées à lʼorigine (intersectées avec le cône) minimisent le quotient isopérimétrique. Notre résultat sʼapplique aux poids strictement positifs, homogènes et satisfaisant une condition de concavité dans le cône. Lorsque le poids est constant, le résultat a été établi par Lions et Pacella en 1990.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2012.10.031

Xavier Cabré 1, 2; Xavier Ros-Oton 2; Joaquim Serra 2

1 ICREA (Institució Catalana de Recerca i Estudis Avançats), Spain
2 Universitat Politècnica de Catalunya, Departament Matemàtica Aplicada I, Avda. Diagonal 647, 08028 Barcelona, Spain
@article{CRMATH_2012__350_21-22_945_0,
     author = {Xavier Cabr\'e and Xavier Ros-Oton and Joaquim Serra},
     title = {Euclidean balls solve some isoperimetric problems with nonradial weights},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {945--947},
     publisher = {Elsevier},
     volume = {350},
     number = {21-22},
     year = {2012},
     doi = {10.1016/j.crma.2012.10.031},
     language = {en},
}
TY  - JOUR
AU  - Xavier Cabré
AU  - Xavier Ros-Oton
AU  - Joaquim Serra
TI  - Euclidean balls solve some isoperimetric problems with nonradial weights
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 945
EP  - 947
VL  - 350
IS  - 21-22
PB  - Elsevier
DO  - 10.1016/j.crma.2012.10.031
LA  - en
ID  - CRMATH_2012__350_21-22_945_0
ER  - 
%0 Journal Article
%A Xavier Cabré
%A Xavier Ros-Oton
%A Joaquim Serra
%T Euclidean balls solve some isoperimetric problems with nonradial weights
%J Comptes Rendus. Mathématique
%D 2012
%P 945-947
%V 350
%N 21-22
%I Elsevier
%R 10.1016/j.crma.2012.10.031
%G en
%F CRMATH_2012__350_21-22_945_0
Xavier Cabré; Xavier Ros-Oton; Joaquim Serra. Euclidean balls solve some isoperimetric problems with nonradial weights. Comptes Rendus. Mathématique, Volume 350 (2012) no. 21-22, pp. 945-947. doi : 10.1016/j.crma.2012.10.031. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.10.031/

[1] F. Brock; F. Chiacchio; A. Mercaldo Weighted isoperimetric inequalities in cones and applications, Nonlinear Anal., Volume 75 (2012), pp. 5737-5755

[2] X. Cabré Partial differential equations, geometry, and stochastic control, Butl. Soc. Catalana Mat., Volume 15 (2000), pp. 7-27 (in Catalan)

[3] X. Cabré Elliptic PDEs in Probability and Geometry. Symmetry and regularity of solutions, Discrete Contin. Dyn. Syst., Volume 20 (2008), pp. 425-457

[4] X. Cabré, X. Ros-Oton, Regularity of stable solutions up to dimension 7 in domains of double revolution, Comm. Partial Differential Equations, in press, . | DOI

[5] X. Cabré; X. Ros-Oton Sobolev and isoperimetric inequalities with monomial weights | arXiv

[6] X. Cabré, X. Ros-Oton, J. Serra, Sharp isoperimetric inequalities via the ABP method, in preparation.

[7] A. Díaz, N. Harman, S. Howe, D. Thompson, Isoperimetric problem in sectors with density, Adv. Geom., in press, . | DOI

[8] P.-L. Lions; F. Pacella Isoperimetric inequality for convex cones, Proc. Amer. Math. Soc., Volume 109 (1990), pp. 477-485

[9] C. Maderna; S. Salsa Sharp estimates for solutions to a certain type of singular elliptic boundary value problems in two dimensions, Applicable Anal., Volume 12 (1981), pp. 307-321

[10] F. Morgan Manifolds with density, Notices Amer. Math. Soc., Volume 52 (2005), pp. 853-858

Cited by Sources:

Comments - Policy