[Le système de Davey–Stewartson à données singulières]
On étude lʼexistence des solutions locales et globales du système de Davey–Stewartson avec des donnés initiales dans les spaces de Lorentz, y comprenant les spaces -faibles. En particulier, on prouve lʼexistence des solutions auto-similaires. On dérive aussi des nouveux résultats sur la théorie de scattering et sur la stabilité asymptotique.
We study the existence of local and global solutions for the Davey–Stewartson system with initial data in Lorentz spaces, including weak- spaces. In particular, we prove the existence of self-similar solutions. We also derive new results about scattering theory and asymptotic stability.
Accepté le :
Publié le :
E.J. Villamizar-Roa 1 ; J.E. Pérez-López 1
@article{CRMATH_2012__350_21-22_959_0, author = {E.J. Villamizar-Roa and J.E. P\'erez-L\'opez}, title = {On the {Davey{\textendash}Stewartson} system with singular initial data}, journal = {Comptes Rendus. Math\'ematique}, pages = {959--964}, publisher = {Elsevier}, volume = {350}, number = {21-22}, year = {2012}, doi = {10.1016/j.crma.2012.10.033}, language = {en}, }
E.J. Villamizar-Roa; J.E. Pérez-López. On the Davey–Stewartson system with singular initial data. Comptes Rendus. Mathématique, Volume 350 (2012) no. 21-22, pp. 959-964. doi : 10.1016/j.crma.2012.10.033. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.10.033/
[1] The Davey Stewartson system in weak spaces, Differential Integral Equations, Volume 25 (2012), pp. 883-898
[2] Interpolation Spaces, Springer-Verlag, Berlin–New York, 1976
[3] On the existence of infinite energy solutions for nonlinear Schrödinger equations, Proc. Amer. Math. Soc., Volume 137 (2009), pp. 1977-1987
[4] On three-dimensional packets of surface waves, Proc. R. Soc. Lond. Ser. A, Volume 338 (1974), pp. 101-110
[5] Self-similarity and asymptotic stability for coupled nonlinear Schrödinger equations in high dimensions, Physica D, Volume 241 (2012), pp. 534-542
[6] On the initial value problem for the Davey–Stewartson systems, Nonlinearity, Volume 3 (1990), pp. 475-506
[7] The sharp threshold and limiting profile of blow-up solutions for a Davey–Stewartson system, J. Differential Equations, Volume 250 (2011), pp. 2197-2226
[8] Self-similar solutions to a generalized Davey–Stewartson system, Math. Comput. Modelling, Volume 50 (2009), pp. 1394-1399
Cité par Sources :
Commentaires - Politique