Comptes Rendus
Partial Differential Equations
Strichartz estimates for the periodic non-elliptic Schrödinger equation
[Estimations de Strichartz pour lʼéquation de Schrödinger périodique non-elliptique]
Comptes Rendus. Mathématique, Volume 350 (2012) no. 21-22, pp. 955-958.

Le but de cette Note est de démontrer des estimations de Strichartz optimales avec pertes de dérivées pour lʼéquation de Schrödinger non-elliptique posée sur le tore de dimension 2.

The purpose of this Note is to prove sharp Strichartz estimates with derivative losses for the non-elliptic Schrödinger equation posed on the 2-dimensional torus.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2012.10.029

Nicolas Godet 1 ; Nikolay Tzvetkov 1

1 CNRS & Laboratoire de Mathématiques (UMR 8088), Université de Cergy-Pontoise, F-95000 Cergy-Pontoise, France
@article{CRMATH_2012__350_21-22_955_0,
     author = {Nicolas Godet and Nikolay Tzvetkov},
     title = {Strichartz estimates for the periodic non-elliptic {Schr\"odinger} equation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {955--958},
     publisher = {Elsevier},
     volume = {350},
     number = {21-22},
     year = {2012},
     doi = {10.1016/j.crma.2012.10.029},
     language = {en},
}
TY  - JOUR
AU  - Nicolas Godet
AU  - Nikolay Tzvetkov
TI  - Strichartz estimates for the periodic non-elliptic Schrödinger equation
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 955
EP  - 958
VL  - 350
IS  - 21-22
PB  - Elsevier
DO  - 10.1016/j.crma.2012.10.029
LA  - en
ID  - CRMATH_2012__350_21-22_955_0
ER  - 
%0 Journal Article
%A Nicolas Godet
%A Nikolay Tzvetkov
%T Strichartz estimates for the periodic non-elliptic Schrödinger equation
%J Comptes Rendus. Mathématique
%D 2012
%P 955-958
%V 350
%N 21-22
%I Elsevier
%R 10.1016/j.crma.2012.10.029
%G en
%F CRMATH_2012__350_21-22_955_0
Nicolas Godet; Nikolay Tzvetkov. Strichartz estimates for the periodic non-elliptic Schrödinger equation. Comptes Rendus. Mathématique, Volume 350 (2012) no. 21-22, pp. 955-958. doi : 10.1016/j.crma.2012.10.029. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.10.029/

[1] J. Bourgain Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, Geom. Funct. Anal., Volume 3 (1993), pp. 107-156

[2] N. Burq; P. Gérard; N. Tzvetkov Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, Amer. J. Math., Volume 126 (2004), pp. 569-605

[3] N. Burq; P. Gérard; N. Tzvetkov Bilinear eigenfunction estimates and the nonlinear Schrödinger equation on surfaces, Invent. Math., Volume 159 (2005), pp. 187-223

[4] D. Salort The Schrödinger equation type with a nonelliptic operator, Comm. Partial Differential Equations, Volume 32 (2007) no. 1–3, pp. 209-228

[5] Y. Wang, Periodic cubic hyperbolic Schrödinger equation on T2, preprint.

  • Jean-Claude Saut; Yuexun Wang On the hyperbolic nonlinear Schrödinger equations, Advances in Continuous and Discrete Models, Volume 2024 (2024) no. 1 | DOI:10.1186/s13662-024-03811-w
  • Shu Nakamura; Kouichi Taira Essential self-adjointness of real principal type operators, Annales Henri Lebesgue, Volume 4 (2021), p. 1035 | DOI:10.5802/ahl.96
  • Robert Schippa On Strichartz Estimates from ℓ 2-Decoupling and Applications, Mathematics of Wave Phenomena (2020), p. 279 | DOI:10.1007/978-3-030-47174-3_17
  • Yildirim OZDEMİR A Note On The Stability of Solution for Elliptic-Schrödinger Type Nonlocal Boundary Value Problem, Proceedings of International Mathematical Sciences, Volume 2 (2020) no. 2, p. 129 | DOI:10.47086/pims.778024
  • Kevin Henriot; Kevin Hughes On Restriction Estimates for Discrete Quadratic Surfaces, International Mathematics Research Notices, Volume 2019 (2019) no. 23, p. 7139 | DOI:10.1093/imrn/rnx255
  • Jean Bourgain; Ciprian Demeter Decouplings for curves and hypersurfaces with nonzero Gaussian curvature, Journal d'Analyse Mathématique, Volume 133 (2017) no. 1, p. 279 | DOI:10.1007/s11854-017-0034-3
  • Haruya Mizutani; Nikolay Tzvetkov Strichartz Estimates for Non-Elliptic Schrödinger Equations on Compact Manifolds, Communications in Partial Differential Equations, Volume 40 (2015) no. 6, p. 1182 | DOI:10.1080/03605302.2015.1010211
  • Nicolas Godet A lower bound on the blow-up rate for the Davey–Stewartson system on the torus, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 30 (2013) no. 4, p. 691 | DOI:10.1016/j.anihpc.2012.12.001
  • Yuzhao Wang Periodic cubic Hyperbolic Schrödinger equation onT2, Journal of Functional Analysis, Volume 265 (2013) no. 3, p. 424 | DOI:10.1016/j.jfa.2013.05.016

Cité par 9 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: