[Estimations de Strichartz pour lʼéquation de Schrödinger périodique non-elliptique]
Le but de cette Note est de démontrer des estimations de Strichartz optimales avec pertes de dérivées pour lʼéquation de Schrödinger non-elliptique posée sur le tore de dimension 2.
The purpose of this Note is to prove sharp Strichartz estimates with derivative losses for the non-elliptic Schrödinger equation posed on the 2-dimensional torus.
Accepté le :
Publié le :
Nicolas Godet 1 ; Nikolay Tzvetkov 1
@article{CRMATH_2012__350_21-22_955_0, author = {Nicolas Godet and Nikolay Tzvetkov}, title = {Strichartz estimates for the periodic non-elliptic {Schr\"odinger} equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {955--958}, publisher = {Elsevier}, volume = {350}, number = {21-22}, year = {2012}, doi = {10.1016/j.crma.2012.10.029}, language = {en}, }
TY - JOUR AU - Nicolas Godet AU - Nikolay Tzvetkov TI - Strichartz estimates for the periodic non-elliptic Schrödinger equation JO - Comptes Rendus. Mathématique PY - 2012 SP - 955 EP - 958 VL - 350 IS - 21-22 PB - Elsevier DO - 10.1016/j.crma.2012.10.029 LA - en ID - CRMATH_2012__350_21-22_955_0 ER -
Nicolas Godet; Nikolay Tzvetkov. Strichartz estimates for the periodic non-elliptic Schrödinger equation. Comptes Rendus. Mathématique, Volume 350 (2012) no. 21-22, pp. 955-958. doi : 10.1016/j.crma.2012.10.029. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.10.029/
[1] Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, Geom. Funct. Anal., Volume 3 (1993), pp. 107-156
[2] Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, Amer. J. Math., Volume 126 (2004), pp. 569-605
[3] Bilinear eigenfunction estimates and the nonlinear Schrödinger equation on surfaces, Invent. Math., Volume 159 (2005), pp. 187-223
[4] The Schrödinger equation type with a nonelliptic operator, Comm. Partial Differential Equations, Volume 32 (2007) no. 1–3, pp. 209-228
[5] Y. Wang, Periodic cubic hyperbolic Schrödinger equation on
- On the hyperbolic nonlinear Schrödinger equations, Advances in Continuous and Discrete Models, Volume 2024 (2024) no. 1 | DOI:10.1186/s13662-024-03811-w
- Essential self-adjointness of real principal type operators, Annales Henri Lebesgue, Volume 4 (2021), p. 1035 | DOI:10.5802/ahl.96
- On Strichartz Estimates from ℓ 2-Decoupling and Applications, Mathematics of Wave Phenomena (2020), p. 279 | DOI:10.1007/978-3-030-47174-3_17
- A Note On The Stability of Solution for Elliptic-Schrödinger Type Nonlocal Boundary Value Problem, Proceedings of International Mathematical Sciences, Volume 2 (2020) no. 2, p. 129 | DOI:10.47086/pims.778024
- On Restriction Estimates for Discrete Quadratic Surfaces, International Mathematics Research Notices, Volume 2019 (2019) no. 23, p. 7139 | DOI:10.1093/imrn/rnx255
- Decouplings for curves and hypersurfaces with nonzero Gaussian curvature, Journal d'Analyse Mathématique, Volume 133 (2017) no. 1, p. 279 | DOI:10.1007/s11854-017-0034-3
- Strichartz Estimates for Non-Elliptic Schrödinger Equations on Compact Manifolds, Communications in Partial Differential Equations, Volume 40 (2015) no. 6, p. 1182 | DOI:10.1080/03605302.2015.1010211
- A lower bound on the blow-up rate for the Davey–Stewartson system on the torus, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 30 (2013) no. 4, p. 691 | DOI:10.1016/j.anihpc.2012.12.001
- Periodic cubic Hyperbolic Schrödinger equation onT2, Journal of Functional Analysis, Volume 265 (2013) no. 3, p. 424 | DOI:10.1016/j.jfa.2013.05.016
Cité par 9 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier