Let X be a smooth cubic threefold and be its intermediate Jacobian. We show that there exists a codimension 2 cycle Z on with homologically trivial for each , such that the morphism induced by the Abel–Jacobi map is the identity. This answers positively a question of Voisin in the case of the cubic threefold.
Accepted:
Published online:
Ze Xu 1
@article{CRMATH_2013__351_1-2_63_0, author = {Ze Xu}, title = {A remark on the {Abel{\textendash}Jacobi} morphism for the cubic threefold}, journal = {Comptes Rendus. Math\'ematique}, pages = {63--67}, publisher = {Elsevier}, volume = {351}, number = {1-2}, year = {2013}, doi = {10.1016/j.crma.2012.12.002}, language = {en}, }
Ze Xu. A remark on the Abel–Jacobi morphism for the cubic threefold. Comptes Rendus. Mathématique, Volume 351 (2013) no. 1-2, pp. 63-67. doi : 10.1016/j.crma.2012.12.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.12.002/
[1] Vector bundles on the cubic threefold (A. Bertram et al., eds.), Symposium in Honor of C.H. Clemens, Contemporary Mathematics, vol. 312, 2002, pp. 71-86
[2] Gerstenʼs conjecture and the homology of schemes, Ann. Sci. Ec. Norm. Supér., IV. Sér., Volume 7 (1974), pp. 181-201
[3] Remarks on correspondences and algebraic cycles, Amer. J. Math., Volume 105 (1983), pp. 1235-1253
[4] Rational families of vector bundles on curves, Internat. J. Math., Volume 15 (2004) no. 1, pp. 13-45
[5] The intermediate Jacobian of the cubic threefold, Ann. of Math., Volume 95 (1972) no. 2, pp. 281-356
[6] Espace des modules des faisceaux de rang 2 semi-stables de classes de Chern , et sur la cubique de , Int. Math. Res. Not., Volume 19 (2000), pp. 985-1004
[7] Intersection Theory, Ergebnisse der Mathematik (3), vol. 2, Springer, Berlin, 1984
[8] The Geometry of Moduli Spaces of Sheaves, Aspects of Mathematics, vol. 31, Max-Planck-Institut für Mathematik, Bonn, 1997
[9] The Abel–Jacobi map for cubic threefold and periods of Fano threefolds of degree 14, Doc. Math., Volume 5 (2000), pp. 23-47
[10] The Abel–Jacobi map of a moduli component of vector bundles on the cubic threefold, J. Algebraic Geom., Volume 10 (2001), pp. 37-62
[11] K-cohomology of Severi–Brauer varieties and the norm residue homomorphism, Izv. Akad. Nauk SSSR Ser. Mat., Volume 46 (1982) no. 5, pp. 1011-1046 1135–1136 (in Russian)
[12] Applications of algebraic K-theory to the theory of algebraic cycles, Sitjes 1983 (LNM), Volume vol. 1124 (1985), pp. 216-261
[13] Abel–Jacobi map, integral Hodge classes and decomposition of the diagonal, J. Algebraic Geom., Volume 1056 (2012) no. 3011, pp. 1-34
Cited by Sources:
☆ This work was performed when the author was visiting Institut de Mathématiques de Jussieu.
Comments - Policy