[Opérateurs bornés inférieurement sur les groupes de Lie gradués]
Dans cette note nous présentons un calcul pseudo-différentiel symbolique sur tous les groupes de Lie (nilpotents) gradués et, comme application, une version de lʼinégalité de Gårding. En découlent des bornes inférieures pour des opérateurs de Rockland positifs à coefficients variables ainsi que leur hypo-ellipticité Schwartz.
In this note we present a symbolic pseudo-differential calculus on any graded (nilpotent) Lie group and, as an application, a version of the sharp Gårding inequality. As a corollary, we obtain lower bounds for positive Rockland operators with variable coefficients as well as their Schwartz-hypoellipticity.
Accepté le :
Publié le :
Véronique Fischer 1 ; Michael Ruzhansky 2
@article{CRMATH_2013__351_1-2_13_0, author = {V\'eronique Fischer and Michael Ruzhansky}, title = {Lower bounds for operators on graded {Lie} groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {13--18}, publisher = {Elsevier}, volume = {351}, number = {1-2}, year = {2013}, doi = {10.1016/j.crma.2013.01.004}, language = {en}, }
Véronique Fischer; Michael Ruzhansky. Lower bounds for operators on graded Lie groups. Comptes Rendus. Mathématique, Volume 351 (2013) no. 1-2, pp. 13-18. doi : 10.1016/j.crma.2013.01.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.01.004/
[1] Phase-space analysis and pseudodifferential calculus on the Heisenberg group, Astérisque, Volume 342 (2012)
[2] Calculus on Heisenberg Manifolds, Princeton University Press, 1988
[3] Pseudodifferential operators on groups with dilations, Duke Math. J., Volume 68 (1992), pp. 31-65
[4] Analyse harmonique non-commutative sur certains espaces homogènes, Springer, 1971
[5] V. Fischer, M. Ruzhansky, Quantization on nilpotent Lie groups, monograph, in preparation.
[6] Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat., Volume 13 (1975), pp. 161-207
[7] Hardy Spaces on Homogeneous Groups, Princeton University Press, 1982
[8] Caracterisation des opérateurs hypoelliptiques homogènes invariants à gauche sur un groupe de Lie nilpotent gradué, Comm. Partial Differential Equations, Volume 4 (1979), pp. 899-958
[9] Heisenberg calculus and spectral theory of hypoelliptic operators on Heisenberg manifolds, Mem. Amer. Math. Soc., Volume 194 (2008) (viii+134 pp)
[10] Pseudo-Differential Operators and Symmetries: Background Analysis and Advanced Topics, Birkhäuser, Basel, 2010
[11] Sharp Gårding inequality on compact Lie groups, J. Funct. Anal., Volume 260 (2011), pp. 2881-2901
[12] M. Ruzhansky, V. Turunen, Global quantization of pseudo-differential operators on compact Lie groups, and 3-sphere, Int. Math. Res. Notices IMRN (2012) 58 pp., first published online April 17, 2012, . | DOI
[13] Noncommutative microlocal analysis. I, Mem. Amer. Math. Soc., Volume 52 (1984) (iv+182 pp)
[14] Noncommutative Harmonic Analysis, American Mathematical Society, 1986
Cité par Sources :
Commentaires - Politique