[L’oscillateur harmonique sur le groupe de Heisenberg]
Dans cette note, nous présentons une notion d’oscillateur harmonique sur le groupe de Heisenberg
In this note we present a notion of harmonic oscillator on the Heisenberg group
Révisé le :
Accepté le :
Publié le :
David Rottensteiner 1 ; Michael Ruzhansky 1, 2

@article{CRMATH_2020__358_5_609_0, author = {David Rottensteiner and Michael Ruzhansky}, title = {The {Harmonic} {Oscillator} on the {Heisenberg} {Group}}, journal = {Comptes Rendus. Math\'ematique}, pages = {609--614}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {5}, year = {2020}, doi = {10.5802/crmath.78}, language = {en}, }
David Rottensteiner; Michael Ruzhansky. The Harmonic Oscillator on the Heisenberg Group. Comptes Rendus. Mathématique, Volume 358 (2020) no. 5, pp. 609-614. doi : 10.5802/crmath.78. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.78/
[1] Pseudodifferential operators on the Heisenberg group, Dokl. Akad. Nauk SSSR, Volume 225 (1975), pp. 1245-1248 | MR | Zbl
[2] Spectral estimates for positive Rockland operators, Algebraic groups and Lie groups (Australian Mathematical Society Lecture Series), Volume 9, Cambridge University Press, 1997, pp. 195-213 | MR | Zbl
[3] Heisenberg-Modulation Space on the Crossroads of Coorbit Theory and Decomposition Space Theory (2018) (https://arxiv.org/abs/1812.07876)
[4] Harmonic Analysis in Phase Space, Princeton University Press, 1989 | Zbl
[5] Meta-Heisenberg groups, Fourier analysis (Orono, ME, 1992) (Lecture Notes in Pure and Applied Mathematics), Volume 157, Marcel Dekker, 1994, pp. 121-147 | MR | Zbl
[6] Caracterisation des opérateurs hypoelliptiques homogènes invariants à gauche sur un groupe de Lie nilpotent gradué, Commun. Partial Differ. Equations, Volume 4 (1979) no. 8, pp. 899-958 | DOI | MR | Zbl
[7] Minimum eigenvalues for positive, Rockland operators, Proc. Am. Math. Soc., Volume 94 (1985) no. 4, pp. 718-720 | DOI | MR | Zbl
[8] Spectral theory and representations of nilpotent groups, Bull. Am. Math. Soc., Volume 26 (1992) no. 2, pp. 299-303 | DOI | MR
[9] Étude spectrale d’opérateurs liés à des représentations de groupes nilpotents, J. Funct. Anal., Volume 113 (1993) no. 1, pp. 65-93 | DOI | MR
[10] Time-Frequency Analysis on the Heisenberg Group, Ph. D. Thesis, Imperial College London (2014), 154 pages https://spiral.imperial.ac.uk/handle/10044/1/24568
[11] Harmonic and anharmonic oscillators on the Heisenberg group (2018) (https://arxiv.org/abs/1812.09620)
[12] Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, 43, Princeton University Press, 1993, xiv+695 pages (with the assistance of Timothy S. Murphy) | MR | Zbl
Cité par Sources :
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier