[Test dʼajustement pour les processus homogènes de Markov]
On propose des tests dʼajustement du type chi deux de lʼhypothèse selon laquelle un processus stochastique dʼespace dʼétats fini est un processus de Markov homogène, dont les intensités de transition sont, ou inconnues, ou des fonctions spécifiées dʼun paramètre de dimension finie.
We give chi-squared goodness-of-fit tests for homogeneous Markov processes with unknown transition intensities or with transition intensities of known form depending on a finite-dimensional parameter.
Accepté le :
Publié le :
Vilijandas Bagdonavičius 1 ; Mikhail Nikulin 2
@article{CRMATH_2013__351_3-4_149_0, author = {Vilijandas Bagdonavi\v{c}ius and Mikhail Nikulin}, title = {Goodness-of-fit test for homogeneous {Markov} processes}, journal = {Comptes Rendus. Math\'ematique}, pages = {149--154}, publisher = {Elsevier}, volume = {351}, number = {3-4}, year = {2013}, doi = {10.1016/j.crma.2013.01.014}, language = {en}, }
Vilijandas Bagdonavičius; Mikhail Nikulin. Goodness-of-fit test for homogeneous Markov processes. Comptes Rendus. Mathématique, Volume 351 (2013) no. 3-4, pp. 149-154. doi : 10.1016/j.crma.2013.01.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.01.014/
[1] A Pearson-type goodness-of-fit test for stationary and time-continuous Markov regression models, Stat. Med., Volume 21 (2002), pp. 1899-1911
[2] Pearson-type goodness-of-fit tests: the univariate case, J. Am. Stat. Assoc., Volume 83 (1988), pp. 222-230
[3] Statistical Models Based on Counting Processes, Springer-Verlag, New York, 1993
[4] Chi-squared goodness-of-fit test for right censored data, Int. J. Appl. Math. Stat., Volume 24 (2011), pp. 30-50
[5] Goodness of fit tests in models for life history data based on cumulative hazard rates, Ann. Stat., Volume 18 (1990), pp. 1221-1258
[6] The analysis of panel data under a Markov assumption, J. Am. Stat. Assoc., Volume 80 (1985), pp. 863-871
[7] Exact methods for the transient analysis of nonhomogeneous continuous time Markov chains (W.J. Stewart, ed.), Computations with Markov Chains, Kluwer Academic Publishers, Boston, 1995, pp. 121-133 (Chapter 8)
[8] A general goodness-of-fit test for Markov and hidden Markov models, Stat. Med., Volume 27 (2008), pp. 2177-2195
Cité par Sources :
Commentaires - Politique