[Efficacité de lʼassociation croisée entre études corrélées de dosages]
Le problème statistique de lʼassociation croisée est intimement lié au problème de lʼhétérogénéité dans les études de dosages. Quelques aspects spécifiques dans le cas de lʼassociation croisée sont à considérer si une estimation efficace de la dose maximum tolérée (DMT) doit être obtenue. Le cas de deux populations distinctes est envisagé. Les extensions au cas de plusieurs populations sont, au moins en principe, directes, mais en pratique vraisemblablement gauches et peu fréquentes. Le but est dʼutiliser de façon efficace lʼinformation tirée dʼune premiére étude dans le contexte dʼune seconde. Comme les modèles sont en général mal spécifiés, il nʼest pas possible de se contenter dʼajouter un paramètre pour traiter une nouvelle source dʼaléa.
The statistical problem of bridging is closely associated with the problem of heterogeneity in dose-finding studies. There are some distinctive features in the case of bridging which need to be considered if efficient estimation of the maximum tolerated dose (MTD) is to be accomplished. The case of two distinct populations is considered. Extensions to several populations are, at least in principle, straightforward although, in practice, likely to be awkward and infrequently encountered. The goal is to make efficient use of information gained in one study in the context of a second study. Since working models are typically misspecified it is not possible to just add a further parameter to deal with an added source of variability.
Accepté le :
Publié le :
John OʼQuigley 1
@article{CRMATH_2013__351_9-10_401_0, author = {John O'Quigley}, title = {Efficiency of bridging between related dose finding studies}, journal = {Comptes Rendus. Math\'ematique}, pages = {401--404}, publisher = {Elsevier}, volume = {351}, number = {9-10}, year = {2013}, doi = {10.1016/j.crma.2013.01.015}, language = {en}, }
John OʼQuigley. Efficiency of bridging between related dose finding studies. Comptes Rendus. Mathématique, Volume 351 (2013) no. 9-10, pp. 401-404. doi : 10.1016/j.crma.2013.01.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.01.015/
[1] A theoretical study of the continual reassessment method, J. Stat. Plan. Infer., Volume 136 (2006), pp. 1765-1780
[2] Continual reassessment and related dose-finding designs, Stat. Sci., Volume 25 (2010), pp. 202-216
[3] Continual Reassessment Method; a practical design for Phase 1 clinical studies in cancer, Biometrics, Volume 46 (1990) no. 1, pp. 33-48
[4] Continual reassessment method: A likelihood approach, Biometrics, Volume 52 (1996), pp. 163-174
[5] Two sample continual reassessment method, J. Biopharm. Stat., Volume 9 (1999), pp. 17-44
[6] J. Shu, Continual reassessment designs in the presence of population heterogeneity, PhD thesis, Dept. of Statistics, University of Virginia, USA, 2012.
Cité par Sources :
Commentaires - Politique