[Fonctionnelle exponentielle des processus de Lévy : produits de Weierstrass généralisés et factorisation de Wiener–Hopf]
Dans cette note, nous énonçons une représentation de la transformée de Mellin de la fonctionnelle exponentielle des processus de Lévy sous la forme de produits de Weierstrass généralisés. Nous en déduisons une factorisation multiplicative de Wiener–Hopf généralisant un résultat obtenu récemment par Patie et Savov (2012) [14] ainsi que des propriétés de régularité pour sa loi.
In this note, we state a representation of the Mellin transform of the exponential functional of Lévy processes in terms of generalized Weierstrass products. As by-product, we obtain a multiplicative Wiener–Hopf factorization generalizing previous results obtained by Patie and Savov (2012) [14] as well as smoothness properties of its distribution.
Accepté le :
Publié le :
Pierre Patie 1 ; Mladen Savov 2
@article{CRMATH_2013__351_9-10_393_0, author = {Pierre Patie and Mladen Savov}, title = {Exponential functional of {L\'evy} processes: {Generalized} {Weierstrass} products and {Wiener{\textendash}Hopf} factorization}, journal = {Comptes Rendus. Math\'ematique}, pages = {393--396}, publisher = {Elsevier}, volume = {351}, number = {9-10}, year = {2013}, doi = {10.1016/j.crma.2013.04.023}, language = {en}, }
TY - JOUR AU - Pierre Patie AU - Mladen Savov TI - Exponential functional of Lévy processes: Generalized Weierstrass products and Wiener–Hopf factorization JO - Comptes Rendus. Mathématique PY - 2013 SP - 393 EP - 396 VL - 351 IS - 9-10 PB - Elsevier DO - 10.1016/j.crma.2013.04.023 LA - en ID - CRMATH_2013__351_9-10_393_0 ER -
%0 Journal Article %A Pierre Patie %A Mladen Savov %T Exponential functional of Lévy processes: Generalized Weierstrass products and Wiener–Hopf factorization %J Comptes Rendus. Mathématique %D 2013 %P 393-396 %V 351 %N 9-10 %I Elsevier %R 10.1016/j.crma.2013.04.023 %G en %F CRMATH_2013__351_9-10_393_0
Pierre Patie; Mladen Savov. Exponential functional of Lévy processes: Generalized Weierstrass products and Wiener–Hopf factorization. Comptes Rendus. Mathématique, Volume 351 (2013) no. 9-10, pp. 393-396. doi : 10.1016/j.crma.2013.04.023. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.04.023/
[1] Lévy Processes, Cambridge University Press, 1996
[2] On subordinators, self-similar Markov processes and some factorizations of the exponential variable, Electron. Commun. Probab., Volume 6 (2001), pp. 95-106 (electronic)
[3] Exponential functionals of Lévy processes, Probab. Surv., Volume 2 (2005), pp. 191-212
[4] On continuity properties of the law of integrals of Lévy processes, Séminaire de probabilités XLI, Lect. Notes Math., vol. 1934, Springer, 2008, pp. 137-159
[5] Beta-gamma random variables and intertwining relations between certain Markov processes, Rev. Mat. Iberoam., Volume 14 (1998) no. 2, pp. 311-368
[6] Quasi-stationary distributions and Yaglom limits of self-similar Markov processes, Stoch. Process. Appl., Volume 122 (2012) no. 12, pp. 4054-4095
[7] F. Hirsch, M. Yor, On the Mellin transforms of the perpetuity and the remainder variables associated to a subordinator, Preprint, Université dʼEvry, 2011.
[8] Fluctuations of stable processes and exponential functionals of hypergeometric Lévy processes, Acta Appl. Math., Volume 123 (2013) no. 1, pp. 113-139 | DOI
[9] Special Functions and Their Applications, Dover Publications, New York, 1972
[10] Tail asymptotics for exponential functionals of Lévy processes, Stoch. Process. Appl., Volume 116 (2006), pp. 156-177
[11] A Wiener–Hopf type factorization for the exponential functional of Lévy processes, J. Lond. Math. Soc., Volume 86 (2012) no. 3, pp. 930-956
[12] Law of the absorption time of some positive self-similar Markov processes, Ann. Probab., Volume 40 (2012) no. 2, pp. 765-787
[13] P. Patie, M. Savov, Spectral theory for positive invariant Lamperti-Feller semigroups: The discrete spectrum case via intertwining, Working paper, Available upon request, 2012.
[14] Extended factorizations of exponential functionals of Lévy processes, Electron. J. Probab., Volume 17 (2012) no. 38 (22 pp)
[15] Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, Cambridge, 1999
[16] Exponential Functionals of Brownian Motion and Related Processes, Springer Finance, Berlin, 2001
Cité par Sources :
Commentaires - Politique