Comptes Rendus
Dynamical Systems/Mathematical Physics
Band structure of the Ruelle spectrum of contact Anosov flows
[Structure en bandes du spectre de Ruelle des flots dʼAnosov de contact]
Comptes Rendus. Mathématique, Volume 351 (2013) no. 9-10, pp. 385-391.

Si X est un champ de vecteur dʼAnosov de contact sur une variété compacte lisse M et si VC(M), il est connu que lʼopérateur différentiel A=X+V a un spectre discret appelé résonances de Ruelle–Pollicott dans des espaces de Sobolev spécifiques. On montre que, pour |Imz|, les valeurs propres de A sont incluses dans des bandes verticales et que, dans les gaps entre ces bandes, la résolvante de A est bornée uniformément par rapport à |Im(z)|. Dans chaque bande isolée, la densité des valeurs propres est donnée par une loi de Weyl. Dans la première bande, la plupart des valeurs propres se concentrent sur la ligne verticale Re(z)=DM, qui est la moyenne spatiale de la fonction D(x)=V(x)12divX|Eu(x), où Eu est la distribution instable. Ce spectre en bande permet dʼexprimer le comportement asymptotique des fonctions de corrélations dynamiques.

If X is a contact Anosov vector field on a smooth compact manifold M and VC(M), it is known that the differential operator A=X+V has some discrete spectrum called Ruelle–Pollicott resonances in specific Sobolev spaces. We show that for |Imz| the eigenvalues of A are restricted to vertical bands and in the gaps between the bands, the resolvent of A is bounded uniformly with respect to |Im(z)|. In each isolated band, the density of eigenvalues is given by the Weyl law. In the first band, most of the eigenvalues concentrate to the vertical line Re(z)=DM, the space average of the function D(x)=V(x)12divX|Eu(x) where Eu is the unstable distribution. This band spectrum gives an asymptotic expansion for dynamical correlation functions.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2013.04.022
Frédéric Faure 1 ; Masato Tsujii 2

1 Institut Fourier, UMR 5582, 100, rue des Maths, BP74, 38402 Saint-Martin-dʼHères, France
2 Department of Mathematics, Kyushu University, Moto-oka 744, Nishi-ku, Fukuoka, 819-0395, Japan
@article{CRMATH_2013__351_9-10_385_0,
     author = {Fr\'ed\'eric Faure and Masato Tsujii},
     title = {Band structure of the {Ruelle} spectrum of contact {Anosov} flows},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {385--391},
     publisher = {Elsevier},
     volume = {351},
     number = {9-10},
     year = {2013},
     doi = {10.1016/j.crma.2013.04.022},
     language = {en},
}
TY  - JOUR
AU  - Frédéric Faure
AU  - Masato Tsujii
TI  - Band structure of the Ruelle spectrum of contact Anosov flows
JO  - Comptes Rendus. Mathématique
PY  - 2013
SP  - 385
EP  - 391
VL  - 351
IS  - 9-10
PB  - Elsevier
DO  - 10.1016/j.crma.2013.04.022
LA  - en
ID  - CRMATH_2013__351_9-10_385_0
ER  - 
%0 Journal Article
%A Frédéric Faure
%A Masato Tsujii
%T Band structure of the Ruelle spectrum of contact Anosov flows
%J Comptes Rendus. Mathématique
%D 2013
%P 385-391
%V 351
%N 9-10
%I Elsevier
%R 10.1016/j.crma.2013.04.022
%G en
%F CRMATH_2013__351_9-10_385_0
Frédéric Faure; Masato Tsujii. Band structure of the Ruelle spectrum of contact Anosov flows. Comptes Rendus. Mathématique, Volume 351 (2013) no. 9-10, pp. 385-391. doi : 10.1016/j.crma.2013.04.022. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.04.022/

[1] O. Butterley; C. Liverani Smooth Anosov flows: Correlation spectra and stability, J. Mod. Dyn., Volume 1 (2007) no. 2, pp. 301-322

[2] K. Datchev; S. Dyatlov; M. Zworski Sharp polynomial bounds on the number of Ruelle resonances, 2012 (preprint) | arXiv

[3] D. Dolgopyat On decay of correlations in Anosov flows, Ann. Math. (2), Volume 147 (1998) no. 2, pp. 357-390

[4] S. Dyatlov Resonance projectors and asymptotics for r-normally hyperbolic trapped sets, 2013 (preprint) | arXiv

[5] F. Faure Prequantum chaos: Resonances of the prequantum cat map, J. Mod. Dyn., Volume 1 (2007) no. 2, pp. 255-285 | arXiv

[6] F. Faure; J. Sjöstrand Upper bound on the density of Ruelle resonances for Anosov flows. A semiclassical approach, Commun. Math. Phys., Volume 308 (2011) no. 2, pp. 325-364 | arXiv

[7] F. Faure; M. Tsujii Prequantum transfer operator for symplectic Anosov diffeomorphism, 2012 (preprint) | arXiv

[8] F. Faure, M. Tsujii, Spectrum and zeta function of contact Anosov flows, paper in preparation.

[9] P. Giulietti; C. Liverani; M. Pollicott Anosov flows and dynamical zeta functions, Ann. Math. (2013) (in press) | arXiv

[10] C. Liverani On contact Anosov flows, Ann. Math. (2), Volume 159 (2004) no. 3, pp. 1275-1312

[11] A. Martinez An Introduction to Semiclassical and Microlocal Analysis, Universitext, Springer, New York, NY, 2002

[12] S. Nonnenmacher; M. Zworski Decay of correlations for normally hyperbolic trapping, 2013 | arXiv

[13] J. Sjöstrand Asymptotic distribution of eigenfrequencies for damped wave equations, Publ. Res. Inst. Math. Sci., Volume 36 (2000) no. 5, pp. 573-611

[14] M. Taylor Partial Differential Equations, vol. I, Springer, 1996

[15] M. Tsujii Quasi-compactness of transfer operators for contact Anosov flows, Nonlinearity, Volume 23 (2010) no. 7, pp. 1495-1545 | arXiv

[16] M. Tsujii Contact Anosov flows and the Fourier–Bros–Iagolnitzer transform, Ergod. Theory Dyn. Syst., Volume 32 (2012) no. 6, pp. 2083-2118

[17] M. Zworski Semiclassical Analysis, Graduate Studies in Mathematics Series, American Mathematical Society, 2012

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Ruelle operators and decay of correlations for contact Anosov flows

Luchezar Stoyanov

C. R. Math (2013)


Sharp large deviations for some hyperbolic flows

Vesselin Petkov; Luchezar Stoyanov

C. R. Math (2012)


Analytic continuation of the resolvent of the Laplacian and the dynamical zeta function

Vesselin Petkov; Latchezar Stoyanov

C. R. Math (2007)