Comptes Rendus
Complex Analysis
Coefficient estimates for a class of meromorphic bi-univalent functions
[Estimation de coefficients pour une classe de fonctions méromorphes bi-univalentes]
Comptes Rendus. Mathématique, Volume 351 (2013) no. 9-10, pp. 349-352.

Une fonction univalente dans le disque unité ouvert est dite bi-univalente si sa fonction inverse est aussi univalente dans ce domaine. Appliquant le développement à coefficients polynômes de Faber à cette classe de fonctions, nous obtenons des estimations du coefficient général de leur développement de Laurent. Nous examinons également les bornes pour leurs premiers coefficients. Les techniques et les bornes des coefficients présentées ici sont nouvelles dans leur genre. Nous espérons quʼelles susciteront un intérêt pour lʼapplication de notre approche à des problèmes connexes.

Applying the Faber polynomial coefficient expansions to a class of meromorphic bi-univalent functions, we obtain the general coefficient estimates for such functions and also examine their early coefficient bounds. A function univalent in the open unit disk is said to be bi-univalent if its inverse map is also univalent there. Both the technique and the coefficient bounds presented here are new on their own kind. We hope that this article will generate future interest in applying our approach to other related problems.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2013.05.005

Samaneh G. Hamidi 1 ; Suzeini A. Halim 1 ; Jay M. Jahangiri 2

1 Institute of Mathematical Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
2 Department of Mathematical Sciences, Kent State University, Burton, OH 44021-9500, USA
@article{CRMATH_2013__351_9-10_349_0,
     author = {Samaneh G. Hamidi and Suzeini A. Halim and Jay M. Jahangiri},
     title = {Coefficient estimates for a class of meromorphic bi-univalent functions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {349--352},
     publisher = {Elsevier},
     volume = {351},
     number = {9-10},
     year = {2013},
     doi = {10.1016/j.crma.2013.05.005},
     language = {en},
}
TY  - JOUR
AU  - Samaneh G. Hamidi
AU  - Suzeini A. Halim
AU  - Jay M. Jahangiri
TI  - Coefficient estimates for a class of meromorphic bi-univalent functions
JO  - Comptes Rendus. Mathématique
PY  - 2013
SP  - 349
EP  - 352
VL  - 351
IS  - 9-10
PB  - Elsevier
DO  - 10.1016/j.crma.2013.05.005
LA  - en
ID  - CRMATH_2013__351_9-10_349_0
ER  - 
%0 Journal Article
%A Samaneh G. Hamidi
%A Suzeini A. Halim
%A Jay M. Jahangiri
%T Coefficient estimates for a class of meromorphic bi-univalent functions
%J Comptes Rendus. Mathématique
%D 2013
%P 349-352
%V 351
%N 9-10
%I Elsevier
%R 10.1016/j.crma.2013.05.005
%G en
%F CRMATH_2013__351_9-10_349_0
Samaneh G. Hamidi; Suzeini A. Halim; Jay M. Jahangiri. Coefficient estimates for a class of meromorphic bi-univalent functions. Comptes Rendus. Mathématique, Volume 351 (2013) no. 9-10, pp. 349-352. doi : 10.1016/j.crma.2013.05.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.05.005/

[1] H. Airault; A. Bouali Differential calculus on the Faber polynomials, Bull. Sci. Math., Volume 130 (2006) no. 3, pp. 179-222 MR2215663 (2007e:30002)

[2] H. Airault; J. Ren An algebra of differential operators and generating functions on the set of univalent functions, Bull. Sci. Math., Volume 126 (2002) no. 5, pp. 343-367 MR1914725 (2004c:17048)

[3] R.M. Ali; S.K. Lee; V. Ravichandran; S. Supramaniam Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett., Volume 25 (2012) no. 3, pp. 344-351 MR2855984 (2012h:30105)

[4] D.A. Brannan; T.S. Taha On some classes of bi-univalent functions, Stud. Univ. Babeş-Bolyai, Math., Volume 31 (1986) no. 2, pp. 70-77 MR0911858 (88k:30012)

[5] P.L. Duren Univalent Functions, Grundlehren Math. Wiss., vol. 259, Springer, New York, 1983 MR0708494 (85j:30034)

[6] B.A. Frasin; M.K. Aouf New subclasses of bi-univalent functions, Appl. Math. Lett., Volume 24 (2011) no. 9, pp. 1569-1573 MR2803711 (2012j:30027)

[7] J.G. Krzyż; R.J. Libera; E. Złotkiewicz Coefficients of inverses of regular starlike functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A, Volume 33 (1979), pp. 103-110 MR0689590 (84d:30027)

[8] M. Lewin On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., Volume 18 (1967), pp. 63-68 MR0206255 (34 #6074)

[9] K. Lowner Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I, Math. Ann., Volume 89 (1923) no. 1–2, pp. 103-121 (MR1512136)

[10] H.M. Srivastava; A.K. Mishra; P. Gochhayat Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., Volume 23 (2010) no. 10, pp. 1188-1192 MR2665593 (2011e:30055)

[11] P.G. Todorov On the Faber polynomials of the univalent functions of class Σ, J. Math. Anal. Appl., Volume 162 (1991) no. 1, pp. 268-276 MR1135277 (93d:30023)

  • Zhi-Gang Wang; M. U. Farooq; M. Arif; S. N. Malik; F. M. O. Tawfiq A Class of Meromorphic Functions Involving Higher Order Derivative, Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), Volume 59 (2024) no. 6, p. 419 | DOI:10.3103/s1068362324700328
  • Oqlah Al-Refai; Ala Amourah; Tariq Al-Hawary; Basem Aref Frasin; Guozhen Lu A New Method for Estimating General Coefficients to Classes of Bi-univalent Functions, Journal of Function Spaces, Volume 2024 (2024), p. 1 | DOI:10.1155/2024/9889253
  • Oqlah Al-Refai Estimating Coefficient Bounds for Classes of Bi-univalent Functions Defined by Fractional Derivatives, Mathematical Analysis and Numerical Methods, Volume 466 (2024), p. 395 | DOI:10.1007/978-981-97-4876-1_27
  • Mohammad Faisal Khan; Suha B. Al-Shaikh; Ahmad A. Abubaker; Khaled Matarneh New Applications of Faber Polynomials and q-Fractional Calculus for a New Subclass of m-Fold Symmetric bi-Close-to-Convex Functions, Axioms, Volume 12 (2023) no. 6, p. 600 | DOI:10.3390/axioms12060600
  • Ridong Wang; Manoj Singh; Shahid Khan; Huo Tang; Mohammad Faisal Khan; Mustafa Kamal New Applications of Faber Polynomial Expansion for Analytical Bi-Close-to-Convex Functions Defined by Using q-Calculus, Mathematics, Volume 11 (2023) no. 5, p. 1217 | DOI:10.3390/math11051217
  • Adnan Alamoush Certain subclasses of Pseudo-type meromorphic bi-univalent functions, Malaya Journal of Matematik, Volume 10 (2022) no. 01, p. 47 | DOI:10.26637/mjm1001/004
  • Erhan Deniz; Hatice Tuǧba Yolcu Faber polynomial coefficients for meromorphic bi-subordinate functions of complex order, AIMS Mathematics, Volume 5 (2020) no. 1, p. 640 | DOI:10.3934/math.2020043
  • Ahmad Motamednezhad; Safa Salehian Faber polynomial coefficient estimates for a certain subclass of meromorphic bi-univalent functions, Asian-European Journal of Mathematics, Volume 13 (2020) no. 04, p. 2050076 | DOI:10.1142/s179355712050076x
  • Adnan ALAMOUSH A subclass of pseudo-type meromorphic bi-univalent functions, Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics (2020), p. 31 | DOI:10.31801/cfsuasmas.650840
  • K. I. Noor; Q. Z. Ahmad; H. Orhan; N. Khan; M. Arif A Class of Meromorphic Bazilevič-Type Functions Defined by a Differential Operator, Ukrainian Mathematical Journal, Volume 71 (2020) no. 10, p. 1590 | DOI:10.1007/s11253-020-01733-w
  • Ala A. Amourah, Volume 2096 (2019), p. 020024 | DOI:10.1063/1.5097821
  • Ahmad Zireh; Safa Salehian Initial coefficient bounds for certain class of meromorphic bi-univalent functions, Acta Universitatis Sapientiae, Mathematica, Volume 11 (2019) no. 1, p. 234 | DOI:10.2478/ausm-2019-0018
  • Chow Li Yong; Aini Janteng; Suzeini Abd. Halim, Volume 1974 (2018), p. 030018 | DOI:10.1063/1.5041662
  • T. Janani; S. Yalcin Coefficient Bounds of Bi-univalent Functions Using Faber Polynomial, Advances in Algebra and Analysis (2018), p. 151 | DOI:10.1007/978-3-030-01120-8_18
  • Young Jae Sim; Oh Sang Kwon Certain Subclasses of Meromorphically Bi-Univalent Functions, Bulletin of the Malaysian Mathematical Sciences Society, Volume 40 (2017) no. 2, p. 841 | DOI:10.1007/s40840-016-0335-1
  • S. Kanas; E. Analouei Adegani; A. Zireh An Unified Approach to Second Hankel Determinant of Bi-Subordinate Functions, Mediterranean Journal of Mathematics, Volume 14 (2017) no. 6 | DOI:10.1007/s00009-017-1031-6
  • Abdullah Aljouiee; Pranay Goswami Coefficients Estimates of the Class of Biunivalent Functions, Journal of Function Spaces, Volume 2016 (2016), p. 1 | DOI:10.1155/2016/3454763
  • Jay M. Jahangiri; Samaneh G. Hamidi Coefficients of Meromorphic Bi-Bazilevic Functions, Journal of Complex Analysis, Volume 2014 (2014), p. 1 | DOI:10.1155/2014/263917

Cité par 18 documents. Sources : Crossref

Commentaires - Politique