[Estimation de coefficients pour une classe de fonctions méromorphes bi-univalentes]
Une fonction univalente dans le disque unité ouvert est dite bi-univalente si sa fonction inverse est aussi univalente dans ce domaine. Appliquant le développement à coefficients polynômes de Faber à cette classe de fonctions, nous obtenons des estimations du coefficient général de leur développement de Laurent. Nous examinons également les bornes pour leurs premiers coefficients. Les techniques et les bornes des coefficients présentées ici sont nouvelles dans leur genre. Nous espérons quʼelles susciteront un intérêt pour lʼapplication de notre approche à des problèmes connexes.
Applying the Faber polynomial coefficient expansions to a class of meromorphic bi-univalent functions, we obtain the general coefficient estimates for such functions and also examine their early coefficient bounds. A function univalent in the open unit disk is said to be bi-univalent if its inverse map is also univalent there. Both the technique and the coefficient bounds presented here are new on their own kind. We hope that this article will generate future interest in applying our approach to other related problems.
Accepté le :
Publié le :
Samaneh G. Hamidi 1 ; Suzeini A. Halim 1 ; Jay M. Jahangiri 2
@article{CRMATH_2013__351_9-10_349_0, author = {Samaneh G. Hamidi and Suzeini A. Halim and Jay M. Jahangiri}, title = {Coefficient estimates for a class of meromorphic bi-univalent functions}, journal = {Comptes Rendus. Math\'ematique}, pages = {349--352}, publisher = {Elsevier}, volume = {351}, number = {9-10}, year = {2013}, doi = {10.1016/j.crma.2013.05.005}, language = {en}, }
TY - JOUR AU - Samaneh G. Hamidi AU - Suzeini A. Halim AU - Jay M. Jahangiri TI - Coefficient estimates for a class of meromorphic bi-univalent functions JO - Comptes Rendus. Mathématique PY - 2013 SP - 349 EP - 352 VL - 351 IS - 9-10 PB - Elsevier DO - 10.1016/j.crma.2013.05.005 LA - en ID - CRMATH_2013__351_9-10_349_0 ER -
Samaneh G. Hamidi; Suzeini A. Halim; Jay M. Jahangiri. Coefficient estimates for a class of meromorphic bi-univalent functions. Comptes Rendus. Mathématique, Volume 351 (2013) no. 9-10, pp. 349-352. doi : 10.1016/j.crma.2013.05.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.05.005/
[1] Differential calculus on the Faber polynomials, Bull. Sci. Math., Volume 130 (2006) no. 3, pp. 179-222 MR2215663 (2007e:30002)
[2] An algebra of differential operators and generating functions on the set of univalent functions, Bull. Sci. Math., Volume 126 (2002) no. 5, pp. 343-367 MR1914725 (2004c:17048)
[3] Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett., Volume 25 (2012) no. 3, pp. 344-351 MR2855984 (2012h:30105)
[4] On some classes of bi-univalent functions, Stud. Univ. Babeş-Bolyai, Math., Volume 31 (1986) no. 2, pp. 70-77 MR0911858 (88k:30012)
[5] Univalent Functions, Grundlehren Math. Wiss., vol. 259, Springer, New York, 1983 MR0708494 (85j:30034)
[6] New subclasses of bi-univalent functions, Appl. Math. Lett., Volume 24 (2011) no. 9, pp. 1569-1573 MR2803711 (2012j:30027)
[7] Coefficients of inverses of regular starlike functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A, Volume 33 (1979), pp. 103-110 MR0689590 (84d:30027)
[8] On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., Volume 18 (1967), pp. 63-68 MR0206255 (34 #6074)
[9] Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I, Math. Ann., Volume 89 (1923) no. 1–2, pp. 103-121 (MR1512136)
[10] Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., Volume 23 (2010) no. 10, pp. 1188-1192 MR2665593 (2011e:30055)
[11] On the Faber polynomials of the univalent functions of class Σ, J. Math. Anal. Appl., Volume 162 (1991) no. 1, pp. 268-276 MR1135277 (93d:30023)
- A Class of Meromorphic Functions Involving Higher Order Derivative, Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), Volume 59 (2024) no. 6, p. 419 | DOI:10.3103/s1068362324700328
- A New Method for Estimating General Coefficients to Classes of Bi-univalent Functions, Journal of Function Spaces, Volume 2024 (2024), p. 1 | DOI:10.1155/2024/9889253
- Estimating Coefficient Bounds for Classes of Bi-univalent Functions Defined by Fractional Derivatives, Mathematical Analysis and Numerical Methods, Volume 466 (2024), p. 395 | DOI:10.1007/978-981-97-4876-1_27
- New Applications of Faber Polynomials and q-Fractional Calculus for a New Subclass of m-Fold Symmetric bi-Close-to-Convex Functions, Axioms, Volume 12 (2023) no. 6, p. 600 | DOI:10.3390/axioms12060600
- New Applications of Faber Polynomial Expansion for Analytical Bi-Close-to-Convex Functions Defined by Using q-Calculus, Mathematics, Volume 11 (2023) no. 5, p. 1217 | DOI:10.3390/math11051217
- Certain subclasses of Pseudo-type meromorphic bi-univalent functions, Malaya Journal of Matematik, Volume 10 (2022) no. 01, p. 47 | DOI:10.26637/mjm1001/004
- Faber polynomial coefficients for meromorphic bi-subordinate functions of complex order, AIMS Mathematics, Volume 5 (2020) no. 1, p. 640 | DOI:10.3934/math.2020043
- Faber polynomial coefficient estimates for a certain subclass of meromorphic bi-univalent functions, Asian-European Journal of Mathematics, Volume 13 (2020) no. 04, p. 2050076 | DOI:10.1142/s179355712050076x
- A subclass of pseudo-type meromorphic bi-univalent functions, Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics (2020), p. 31 | DOI:10.31801/cfsuasmas.650840
- A Class of Meromorphic Bazilevič-Type Functions Defined by a Differential Operator, Ukrainian Mathematical Journal, Volume 71 (2020) no. 10, p. 1590 | DOI:10.1007/s11253-020-01733-w
- , Volume 2096 (2019), p. 020024 | DOI:10.1063/1.5097821
- Initial coefficient bounds for certain class of meromorphic bi-univalent functions, Acta Universitatis Sapientiae, Mathematica, Volume 11 (2019) no. 1, p. 234 | DOI:10.2478/ausm-2019-0018
- , Volume 1974 (2018), p. 030018 | DOI:10.1063/1.5041662
- Coefficient Bounds of Bi-univalent Functions Using Faber Polynomial, Advances in Algebra and Analysis (2018), p. 151 | DOI:10.1007/978-3-030-01120-8_18
- Certain Subclasses of Meromorphically Bi-Univalent Functions, Bulletin of the Malaysian Mathematical Sciences Society, Volume 40 (2017) no. 2, p. 841 | DOI:10.1007/s40840-016-0335-1
- An Unified Approach to Second Hankel Determinant of Bi-Subordinate Functions, Mediterranean Journal of Mathematics, Volume 14 (2017) no. 6 | DOI:10.1007/s00009-017-1031-6
- Coefficients Estimates of the Class of Biunivalent Functions, Journal of Function Spaces, Volume 2016 (2016), p. 1 | DOI:10.1155/2016/3454763
- Coefficients of Meromorphic Bi-Bazilevic Functions, Journal of Complex Analysis, Volume 2014 (2014), p. 1 | DOI:10.1155/2014/263917
Cité par 18 documents. Sources : Crossref
Commentaires - Politique