In studying the Bott–Chern and Aeppli cohomologies for q-complete manifolds, we introduce the class of cohomologically Bott–Chern q-complete manifolds.
Dans lʼétude des cohomologies de Bott–Chern et dʼAeppli pour les varietés q-complètes, nous introduisons la classe des varietés cohomologiquement Bott–Chern q-complètes.
Accepted:
Published online:
Daniele Angella 1; Simone Calamai 2
@article{CRMATH_2013__351_9-10_343_0, author = {Daniele Angella and Simone Calamai}, title = {Bott{\textendash}Chern cohomology and \protect\emph{q}-complete domains}, journal = {Comptes Rendus. Math\'ematique}, pages = {343--348}, publisher = {Elsevier}, volume = {351}, number = {9-10}, year = {2013}, doi = {10.1016/j.crma.2013.05.006}, language = {en}, }
Daniele Angella; Simone Calamai. Bott–Chern cohomology and q-complete domains. Comptes Rendus. Mathématique, Volume 351 (2013) no. 9-10, pp. 343-348. doi : 10.1016/j.crma.2013.05.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.05.006/
[1] On the cohomology structure of Stein manifolds, Minneapolis, MN, 1964, Springer, Berlin (1965), pp. 58-70
[2] Théorème de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. Fr., Volume 90 (1962), pp. 193-259
[3] Erratum to: Carleman estimates for the Laplace–Beltrami equation on complex manifolds, Inst. Hautes Études Sci. Publ. Math., Volume 25 (1965), pp. 81-130
[4] On the -lemma and Bott–Chern cohomology, Invent. Math., Volume 192 (2013) no. 1, pp. 71-81
[5] Hermitian vector bundles and the equidistribution of the zeroes of their holomorphic sections, Acta Math., Volume 114 (1965) no. 1, pp. 71-112
[6] Complex analytic and differential geometry, 2012 http://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf
[7] Cohomologically complete and pseudoconvex domains, Comment. Math. Helv., Volume 55 (1980) no. 3, pp. 413-426
[8] Relations between the cohomology groups of Dolbeault and topological invariants, Proc. Natl. Acad. Sci. USA, Volume 41 (1955), pp. 641-644
[9] Theory of Stein Spaces, Grundlehren Math. Wiss., vol. 236, Springer, 2004 (reprint of the 1979 edition, originally published as)
[10] A Userʼs Guide to Spectral Sequences, Cambridge Stud. Adv. Math., vol. 58, Cambridge University Press, Cambridge, 2001
[11] Zur Theorie der analytischen Mannigfaltigkeiten im Raume von n komplexen Veränderlichen, Math. Ann., Volume 129 (1955) no. 1, pp. 96-138
[12] Autour de la cohomologie de Bott–Chern | arXiv
Cited by Sources:
☆ This work was supported by the Project PRIN “Varietà reali e complesse: geometria, topologia e analisi armonica”, by the Project FIRB “Geometria Differenziale e Teoria Geometrica delle Funzioni”, and by GNSAGA of INdAM.
Comments - Policy