[Régularité du flot de Kähler–Ricci]
In this short note, we announce a regularity theorem for the Kähler–Ricci flow on a compact Fano manifold (Kähler manifold with positive first Chern class) and its application to the limiting behavior of the Kähler–Ricci flow on Fano 3-manifolds. Moreover, we also present a partial
Dans cette courte note, nous annonçons un théorème de régularité pour le flot de Kähler–Ricci sur une variété compacte de Fano (cʼest-à-dire une variété kählérienne à première classe de Chern positive) et son application à lʼétude du comportement limite du flot de Kähler–Ricci sur les variétés de Fano de dimension 3. Par ailleurs, nous présentons une estimation
Accepté le :
Publié le :
Gang Tian 1, 2 ; Zhenlei Zhang 3
@article{CRMATH_2013__351_15-16_635_0, author = {Gang Tian and Zhenlei Zhang}, title = {Regularity of the {K\"ahler{\textendash}Ricci} flow}, journal = {Comptes Rendus. Math\'ematique}, pages = {635--638}, publisher = {Elsevier}, volume = {351}, number = {15-16}, year = {2013}, doi = {10.1016/j.crma.2013.07.005}, language = {en}, }
Gang Tian; Zhenlei Zhang. Regularity of the Kähler–Ricci flow. Comptes Rendus. Mathématique, Volume 351 (2013) no. 15-16, pp. 635-638. doi : 10.1016/j.crma.2013.07.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.07.005/
[1] Deformation of Kähler metrics to Kähler–Einstein metrics on compact Kähler manifolds, Invent. Math., Volume 81 (1985), pp. 359-372
[2] Lower bounds on the Ricci curvature and the almost rigidity of warped products, Ann. Math., Volume 144 (1996), pp. 189-237
[3] On the structure of spaces with Ricci curvature bounded below I, J. Differential Geom., Volume 46 (1997), pp. 406-480
[4] On the structure of spaces with Ricci curvature bounded below II, J. Differential Geom., Volume 54 (2000), pp. 13-35
[5] On the singularities of spaces with bounded Ricci curvature, Geom. Funct. Anal., Volume 12 (2002), pp. 873-914
[6] Kähler–Einstein metrics on Fano manifolds, I: approximation of metrics with cone singularities | arXiv
[7] Kähler–Einstein metrics on Fano manifolds, II: limits with cone angle less than 2π | arXiv
[8] Kähler–Einstein metrics on Fano manifolds, III: limits as cone angle approaches 2 and completion of the main proof | arXiv
[9] Ricci flow on Kähler–Einstein manifolds, Duke Math. J., Volume 131 (2006), pp. 17-73
[10] Space of Ricci flows I, Commun. Pure Appl. Math., Volume 65 (2012), pp. 1399-1457
[11] Gromov–Hausdorff limits of Kähler manifolds and algebraic geometry | arXiv
[12] The entropy formula for the Ricci flow and its geometric applications | arXiv
[13] Relative volume comparison with integral curvature bounds, Geom. Funct. Anal., Volume 7 (1997), pp. 1031-1045
[14] Analysis and geometry on manifolds with integral Ricci curvature bounds. II, Trans. Amer. Math. Soc., Volume 353 (2001), pp. 457-478
[15] Degeneration of Kähler–Ricci solitons on Fano manifolds | arXiv
[16] Bounding scalar curvature and diameter along the Kähler–Ricci flow (after Perelman), J. Inst. Math. Jussieu, Volume 7 (2008), pp. 575-587
[17] On Calabiʼs conjecture for complex surfaces with positive first Chern class, Invent. Math., Volume 101 (1990), pp. 101-172
[18] Kähler–Einstein metrics with positive scalar curvature, Invent. Math., Volume 130 (1997), pp. 1-39
[19] Existence of Einstein metrics on Fano manifolds, Prog. Math., Volume 297 (2012), pp. 119-159
[20] K-stability and Kähler–Einstein metrics | arXiv
[21] Degeneration of Kähler–Ricci solitons, Int. Math. Res. Not. IMRN (2012), pp. 957-985
[22] G. Tian, Z.L. Zhang, Long-time limits of the Kähler–Ricci flow, preprint.
[23] Convergence of Kähler–Ricci flow, J. Amer. Math. Soc., Volume 20 (2007), pp. 675-699
[24] A uniform Sobolev inequality under Ricci flow, Int. Math. Res. Not. IMRN (2007), pp. 1-12
[25] Kähler–Ricci flow on Fano manifolds with vanished Futaki invariants, Math. Res. Lett., Volume 18 (2011), pp. 969-982
- Regularity of Kähler–Ricci flows on Fano manifolds, Acta Mathematica, Volume 216 (2016) no. 1, p. 127 | DOI:10.1007/s11511-016-0137-1
- Ricci flow on surfaces with conic singularities, Analysis PDE, Volume 8 (2015) no. 4, p. 839 | DOI:10.2140/apde.2015.8.839
Cité par 2 documents. Sources : Crossref
Commentaires - Politique