Comptes Rendus
Mathematical Analysis/Harmonic Analysis
On the differentiable vectors for contragredient representations
[Sur les vecteurs différentiables par rapport aux représentations cotragrédientes]
Comptes Rendus. Mathématique, Volume 351 (2013) no. 13-14, pp. 513-516.

On obtient quelques résultats sur les représentations contragrédientes des groupes de Lie qui permettent dʼaborder, dʼune manière abstraite, la caractérisation de lʼadhérence normique de lʼensemble des opérateurs pseudodifférentiels dʼordre zero obtenue récemment par J. Nourrigat.

We establish a few simple results on contragredient representations of Lie groups, with a view toward applications to the abstract characterization of some spaces of pseudo-differential operators. In particular, this method provides an abstract approach to J. Nourrigatʼs recent description of the norm closure of the pseudo-differential operators of order zero.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2013.07.017

Ingrid Beltita 1 ; Daniel Beltita 1

1 Institute of Mathematics “Simion Stoilow” of the Romanian Academy, P.O. Box 1-764, Bucharest, Romania
@article{CRMATH_2013__351_13-14_513_0,
     author = {Ingrid Beltita and Daniel Beltita},
     title = {On the differentiable vectors for contragredient representations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {513--516},
     publisher = {Elsevier},
     volume = {351},
     number = {13-14},
     year = {2013},
     doi = {10.1016/j.crma.2013.07.017},
     language = {en},
}
TY  - JOUR
AU  - Ingrid Beltita
AU  - Daniel Beltita
TI  - On the differentiable vectors for contragredient representations
JO  - Comptes Rendus. Mathématique
PY  - 2013
SP  - 513
EP  - 516
VL  - 351
IS  - 13-14
PB  - Elsevier
DO  - 10.1016/j.crma.2013.07.017
LA  - en
ID  - CRMATH_2013__351_13-14_513_0
ER  - 
%0 Journal Article
%A Ingrid Beltita
%A Daniel Beltita
%T On the differentiable vectors for contragredient representations
%J Comptes Rendus. Mathématique
%D 2013
%P 513-516
%V 351
%N 13-14
%I Elsevier
%R 10.1016/j.crma.2013.07.017
%G en
%F CRMATH_2013__351_13-14_513_0
Ingrid Beltita; Daniel Beltita. On the differentiable vectors for contragredient representations. Comptes Rendus. Mathématique, Volume 351 (2013) no. 13-14, pp. 513-516. doi : 10.1016/j.crma.2013.07.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.07.017/

[1] W.O. Amrein; A. Boutet de Monvel; V. Georgescu C0-groups, commutator methods and spectral theory of N-body Hamiltonians, Birkhäuser Verlag, Basel, 1996

[2] R. Beals Characterization of pseudodifferential operators and applications, Duke Math. J., Volume 44 (1977) no. 1, pp. 45-57

[3] I. Beltiţă; D. Beltiţă Smooth vectors and Weyl–Pedersen calculus for representations of nilpotent Lie groups, Ann. Univ. Buchar. Math. Ser., Volume 58 (2010) no. 1, pp. 17-46

[4] I. Beltiţă; D. Beltiţă Boundedness for Weyl–Pedersen calculus on flat coadjoint orbits | arXiv

[5] H.O. Cordes The Technique of Pseudodifferential Operators, Cambridge University Press, Cambridge, UK, 1995

[6] L. Gårding Note on continuous representations of Lie groups, Proc. Natl. Acad. Sci. USA, Volume 33 (1947), pp. 331-332

[7] S.T. Melo Smooth operators for the regular representation on homogeneous spaces, Studia Math., Volume 142 (2000) no. 2, pp. 149-157

[8] K.-H. Neeb On differentiable vectors for representations of infinite dimensional Lie groups, J. Funct. Anal., Volume 259 (2010), pp. 2814-2855

[9] J. van Neerven The Adjoint of a Semigroup of Linear Operators, Springer-Verlag, Berlin, 1992

[10] J. Nourrigat Closure of the set of pseudodifferential operators, C. R. Acad. Sci. Paris, Ser. I, Volume 350 (2012) no. 7–8, pp. 355-358

[11] N.S. Poulsen On C-vectors and intertwining bilinear forms for representations of Lie groups, J. Funct. Anal., Volume 9 (1972), pp. 87-120

[12] M.E. Taylor Beals–Cordes-type characterizations of pseudodifferential operators, Proc. Amer. Math. Soc., Volume 125 (1997), pp. 1711-1716

Cité par Sources :

Commentaires - Politique