[Existence globale et bornes des solutions classiques dʼun modèle chimiotaxique avec une source logistique]
We consider the chemotaxis system:
On considère le système de la chimiotaxie :
Accepté le :
Publié le :
Khadijeh Baghaei 1 ; Mahmoud Hesaaraki 2
@article{CRMATH_2013__351_15-16_585_0, author = {Khadijeh Baghaei and Mahmoud Hesaaraki}, title = {Global existence and boundedness of classical solutions for a chemotaxis model with logistic source}, journal = {Comptes Rendus. Math\'ematique}, pages = {585--591}, publisher = {Elsevier}, volume = {351}, number = {15-16}, year = {2013}, doi = {10.1016/j.crma.2013.07.027}, language = {en}, }
TY - JOUR AU - Khadijeh Baghaei AU - Mahmoud Hesaaraki TI - Global existence and boundedness of classical solutions for a chemotaxis model with logistic source JO - Comptes Rendus. Mathématique PY - 2013 SP - 585 EP - 591 VL - 351 IS - 15-16 PB - Elsevier DO - 10.1016/j.crma.2013.07.027 LA - en ID - CRMATH_2013__351_15-16_585_0 ER -
%0 Journal Article %A Khadijeh Baghaei %A Mahmoud Hesaaraki %T Global existence and boundedness of classical solutions for a chemotaxis model with logistic source %J Comptes Rendus. Mathématique %D 2013 %P 585-591 %V 351 %N 15-16 %I Elsevier %R 10.1016/j.crma.2013.07.027 %G en %F CRMATH_2013__351_15-16_585_0
Khadijeh Baghaei; Mahmoud Hesaaraki. Global existence and boundedness of classical solutions for a chemotaxis model with logistic source. Comptes Rendus. Mathématique, Volume 351 (2013) no. 15-16, pp. 585-591. doi : 10.1016/j.crma.2013.07.027. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.07.027/
[1] Finite-time blowup and global-in-time unbounded solutions to a parabolic–parabolic quasilinear Keller–Segel system in higher dimensions, J. Differ. Equ., Volume 252 (2012), pp. 5832-5851
[2] Chemotactic collapse for the Keller–Segel model, J. Math. Biol., Volume 35 (1996), pp. 177-194
[3] A blow-up mechanism for a chemotaxis model, Ann. Sc. Norm. Super. Pisa, Cl. Sci. IV, Volume 24 (1997), pp. 633-683
[4] Global existence for a parabolic chemotaxis model with prevention of overcrowding, Acta Appl. Math., Volume 26 (2001), pp. 280-301
[5] A userʼs guide to PDE models for chemotaxis, J. Math. Biol., Volume 58 (2009), pp. 183-217
[6] From 1970 until present: the Keller–Segel model in chemotaxis and its consequences, I, Jahresber. Dtsch. Math.-Ver., Volume 105 (2003), pp. 103-165
[7] From 1970 until present: the Keller–Segel model in chemotaxis and its consequences, II, Jahresber. Dtsch. Math.-Ver., Volume 106 (2004), pp. 51-69
[8] Blow-up in a chemotaxis model without symmetry assumptions, Eur. J. Appl. Math., Volume 12 (2001), pp. 159-177
[9] Boundedness vs. blow-up in a chemotaxis system, J. Differ. Equ., Volume 215 (2005), pp. 52-107
[10] On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., Volume 329 (1992), pp. 819-824
[11] Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., Volume 26 (1970), pp. 399-415
[12] Aggregating pattern dynamics in a chemotaxis model including growth, Physica, A, Volume 230 (1996), pp. 499-543
[13] Global existence and boundedness of classical solutions to a parabolic–parabolic chemotaxis system, Nonlinear Anal., Real World Appl., Volume 14 (2013), pp. 1634-1642
[14] Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl., Volume 5 (1995), pp. 581-601
[15] Blow-up of nonradial solutions to parabolic–elliptic systems modelling chemotaxis in two-dimensional domains, J. Inequal. Appl., Volume 6 (2001), pp. 37-55
[16] Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis, Funkc. Ekvacioj, Volume 40 (1997), pp. 411-433
[17] Global existence of solutions to a parabolic–parabolic system for chemotaxis with weak degradation, Nonlinear Anal. TMA, Volume 74 (2011), pp. 286-297
[18] Exponential attractor for a chemotaxis–growth system of equations, Nonlinear Anal. TMA, Volume 51 (2002), pp. 119-144
[19] Finite dimensional attractors for one-dimensional Keller–Segel equations, Funkc. Ekvacioj, Volume 44 (2001), pp. 441-469
[20] Parabolic system of chemotaxis: Blow-up in a finite and the infinite time, Methods Appl. Anal., Volume 8 (2001), pp. 349-367
[21] Boundedness in a chemotaxis model with oxygen consumption by bacteria, J. Math. Anal. Appl., Volume 381 (2011), pp. 521-529
[22] Boundedness in a quasilinear parabolic–parabolic Keller–Segel system with subcritical sensitivity, J. Differ. Equ., Volume 252 (2012), pp. 692-715
[23] Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant, J. Differ. Equ., Volume 252 (2012), pp. 2520-2543
[24] A chemotaxis system with logistic source, Commun. Partial Differ. Equ., Volume 32 (2007), pp. 849-877
[25] Boundedness in the higher-dimensional parabolic–parabolic chemotaxis system with logistic source, Commun. Partial Differ. Equ., Volume 35 (2010), pp. 1516-1537
[26] Absence of collapse in a parabolic chemotaxis system with signal-dependent sensitivity, Math. Nachr., Volume 283 (2010), pp. 1664-1673
[27] Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model, J. Differ. Equ., Volume 248 (2010), pp. 2889-2905
[28] Does a ‘volume-filling effect’ always prevent chemotactic collapse?, Math. Methods Appl. Sci., Volume 33 (2010), pp. 12-24
[29] Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system, J. Math. Pures Appl. (2013) (in press) | DOI
[30] Norm behavior of solutions to a parabolic system of chemotaxis, Math. Jpn., Volume 45 (1997), pp. 241-265
- Asymptotic behavior of a quasilinear parabolic-elliptic-elliptic chemotaxis system with logistic source, ZAMP. Zeitschrift für angewandte Mathematik und Physik, Volume 73 (2022) no. 1, p. 17 (Id/No 22) | DOI:10.1007/s00033-021-01655-y | Zbl:1480.35042
- Stabilization in three-dimensional chemotaxis-growth model with indirect attractant production, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 357 (2019) no. 6, pp. 513-519 | DOI:10.1016/j.crma.2019.05.010 | Zbl:1418.35219
- Global boundedness in a three-dimensional chemotaxis-haptotaxis model, Computers Mathematics with Applications, Volume 77 (2019) no. 9, pp. 2447-2462 | DOI:10.1016/j.camwa.2018.12.030 | Zbl:1442.92015
- Boundedness in a three-dimensional Keller-Segel-Stokes system involving tensor-valued sensitivity with saturation, Discrete and Continuous Dynamical Systems. Series B, Volume 24 (2019) no. 2, pp. 831-849 | DOI:10.3934/dcdsb.2018209 | Zbl:1404.35228
- Global existence of solutions to an
-dimensional parabolic-parabolic system for chemotaxis with logistic-type growth and superlinear production, Osaka Journal of Mathematics, Volume 55 (2018) no. 1, pp. 51-70 | Zbl:1391.35189 - Global boundedness in a two-competing-species chemotaxis system with two chemicals, Acta Applicandae Mathematicae, Volume 148 (2017) no. 1, pp. 157-177 | DOI:10.1007/s10440-016-0083-0 | Zbl:1360.92022
- Large time behavior of solution to an attraction-repulsion chemotaxis system with logistic source in three dimensions, Journal of Mathematical Analysis and Applications, Volume 448 (2017) no. 2, pp. 914-936 | DOI:10.1016/j.jmaa.2016.11.036 | Zbl:1366.35071
- Persistence property in a two-species chemotaxis system with two signals, Journal of Mathematical Physics, Volume 58 (2017) no. 11, p. 111501 | DOI:10.1063/1.5010681 | Zbl:1383.92021
- Global existence and decay for a chemotaxis-growth system with generalized volume-filling effect and sublinear secretion, NoDEA. Nonlinear Differential Equations and Applications, Volume 24 (2017) no. 2, p. 18 (Id/No 13) | DOI:10.1007/s00030-017-0438-x | Zbl:1373.35167
- Convergence rate estimates of a two-species chemotaxis system with two indirect signal production and logistic source in three dimensions, ZAMP. Zeitschrift für angewandte Mathematik und Physik, Volume 68 (2017) no. 3, p. 25 (Id/No 56) | DOI:10.1007/s00033-017-0800-1 | Zbl:1432.35118
- A quasilinear attraction-repulsion chemotaxis system of parabolic-elliptic type with logistic source, Journal of Mathematical Analysis and Applications, Volume 441 (2016) no. 1, pp. 259-292 | DOI:10.1016/j.jmaa.2016.03.061 | Zbl:1338.35057
- Boundedness in a chemotaxis–haptotaxis model with nonlinear diffusion, Nonlinearity, Volume 29 (2016) no. 5, p. 1564 | DOI:10.1088/0951-7715/29/5/1564
- Boundedness and blow-up for a chemotaxis system with generalized volume-filling effect and logistic source, Discrete Continuous Dynamical Systems - A, Volume 35 (2015) no. 5, p. 2299 | DOI:10.3934/dcds.2015.35.2299
- Boundedness in quasilinear Keller-Segel equations with nonlinear sensitivity and logistic source, Discrete and Continuous Dynamical Systems, Volume 35 (2015) no. 8, pp. 3503-3531 | DOI:10.3934/dcds.2015.35.3503 | Zbl:1327.35151
- A multiscale model for pH-tactic invasion with time-varying carrying capacities, IMA Journal of Applied Mathematics, Volume 80 (2015) no. 5, p. 1300 | DOI:10.1093/imamat/hxu055
- Boundedness and global existence in the higher-dimensional parabolic – parabolic chemotaxis system with/without growth source, Journal of Differential Equations, Volume 258 (2015) no. 12, pp. 4275-4323 | DOI:10.1016/j.jde.2015.01.032 | Zbl:1323.35072
- Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source, Journal of Differential Equations, Volume 258 (2015) no. 4, pp. 1158-1191 | DOI:10.1016/j.jde.2014.10.016 | Zbl:1319.35085
- Boundedness of solutions in a chemotaxis system with nonlinear sensitivity and logistic source, Journal of Mathematical Analysis and Applications, Volume 424 (2015) no. 1, pp. 509-522 | DOI:10.1016/j.jmaa.2014.11.031 | Zbl:1307.35069
- On a quasilinear parabolic-elliptic chemotaxis system with logistic source, Journal of Differential Equations, Volume 256 (2014) no. 5, pp. 1847-1872 | DOI:10.1016/j.jde.2013.12.007 | Zbl:1301.35060
Cité par 19 documents. Sources : Crossref, zbMATH
Commentaires - Politique