Comptes Rendus
Partial Differential Equations
Global existence and boundedness of classical solutions for a chemotaxis model with logistic source
[Existence globale et bornes des solutions classiques dʼun modèle chimiotaxique avec une source logistique]
Comptes Rendus. Mathématique, Volume 351 (2013) no. 15-16, pp. 585-591.

We consider the chemotaxis system:

{ut=Δu(uχ(v)v)+f(u),xΩ,t>0,vt=Δvv+ug(u),xΩ,t>0,
under homogeneous Neumann boundary conditions in a bounded domain ΩRn, n1, with smooth boundary and function f is assumed to generalize the logistic source:
f(u)=aubu2,u0,witha>0,b>0.
Moreover, χ(s) and g(s) are nonnegative smooth functions and satisfy:
χ(s)ϱ(1+ϑs)k,s0,with someϱ>0,ϑ>0andk>1,
g(s)h0(1+hs)δ,s0,withh0>0,h0,δ0.
We prove that for all positive values of ϱ, a and b, classical solutions to the above system are uniformly-in-time bounded. This result extends a recent result by C. Mu, L. Wang, P. Zheng and Q. Zhang (2013) [13], which asserts the global existence and boundedness of classical solutions on condition that 0a<2b and ϱ be sufficiently small.

On considère le système de la chimiotaxie :

{ut=Δu(uχ(v)v)+f(u),xΩ,t>0,vt=Δvvug(u),xΩ,t>0,
avec conditions de Neumann homogènes dans un domaine borné ΩRn, n1, de frontière régulière ; on suppose que f est une généralisation dʼune source logistique :
f(u)=aubu2,u0,aveca>0,b>0.
De plus, χ(s) et g(s) sont des fonctions positives ou nulles régulières vérifiant :
χ(s)ϱ(1+ϑs)k,s0,avecϱ>0,ϑ>0,k>1,
g(s)h0(1+hs)δ,s0,avech0>0,h0,δ0.
On démontre que, pour toute valeur positive de ϱ, a et b, les solutions classiques du système ci-dessus sont uniformément bornées en temps. Ce résultat étend un résultat récent de C. Mu, L. Wang, P. Zheng et Q. Zhang (2013) [13], qui établit lʼexistence globale et des bornes des solutions classiques sous les conditions 0a<2b et ϱ assez petit.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2013.07.027

Khadijeh Baghaei 1 ; Mahmoud Hesaaraki 2

1 Department of Mathematics, Iran University of Science and Technology, Tehran, Iran
2 Department of Mathematics, Sharif University of Technology, Tehran, Iran
@article{CRMATH_2013__351_15-16_585_0,
     author = {Khadijeh Baghaei and Mahmoud Hesaaraki},
     title = {Global existence and boundedness of classical solutions for a chemotaxis model with logistic source},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {585--591},
     publisher = {Elsevier},
     volume = {351},
     number = {15-16},
     year = {2013},
     doi = {10.1016/j.crma.2013.07.027},
     language = {en},
}
TY  - JOUR
AU  - Khadijeh Baghaei
AU  - Mahmoud Hesaaraki
TI  - Global existence and boundedness of classical solutions for a chemotaxis model with logistic source
JO  - Comptes Rendus. Mathématique
PY  - 2013
SP  - 585
EP  - 591
VL  - 351
IS  - 15-16
PB  - Elsevier
DO  - 10.1016/j.crma.2013.07.027
LA  - en
ID  - CRMATH_2013__351_15-16_585_0
ER  - 
%0 Journal Article
%A Khadijeh Baghaei
%A Mahmoud Hesaaraki
%T Global existence and boundedness of classical solutions for a chemotaxis model with logistic source
%J Comptes Rendus. Mathématique
%D 2013
%P 585-591
%V 351
%N 15-16
%I Elsevier
%R 10.1016/j.crma.2013.07.027
%G en
%F CRMATH_2013__351_15-16_585_0
Khadijeh Baghaei; Mahmoud Hesaaraki. Global existence and boundedness of classical solutions for a chemotaxis model with logistic source. Comptes Rendus. Mathématique, Volume 351 (2013) no. 15-16, pp. 585-591. doi : 10.1016/j.crma.2013.07.027. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.07.027/

[1] T. Cieślak; C. Stinner Finite-time blowup and global-in-time unbounded solutions to a parabolic–parabolic quasilinear Keller–Segel system in higher dimensions, J. Differ. Equ., Volume 252 (2012), pp. 5832-5851

[2] M.A. Herrero; J.J.L. Velázquez Chemotactic collapse for the Keller–Segel model, J. Math. Biol., Volume 35 (1996), pp. 177-194

[3] M.A. Herrero; J.J.L. Velázquez A blow-up mechanism for a chemotaxis model, Ann. Sc. Norm. Super. Pisa, Cl. Sci. IV, Volume 24 (1997), pp. 633-683

[4] T. Hillen; K.J. Painter Global existence for a parabolic chemotaxis model with prevention of overcrowding, Acta Appl. Math., Volume 26 (2001), pp. 280-301

[5] T. Hillen; K.J. Painter A userʼs guide to PDE models for chemotaxis, J. Math. Biol., Volume 58 (2009), pp. 183-217

[6] D. Horstmann From 1970 until present: the Keller–Segel model in chemotaxis and its consequences, I, Jahresber. Dtsch. Math.-Ver., Volume 105 (2003), pp. 103-165

[7] D. Horstmann From 1970 until present: the Keller–Segel model in chemotaxis and its consequences, II, Jahresber. Dtsch. Math.-Ver., Volume 106 (2004), pp. 51-69

[8] D. Horstmann; G. Wang Blow-up in a chemotaxis model without symmetry assumptions, Eur. J. Appl. Math., Volume 12 (2001), pp. 159-177

[9] D. Horstmann; M. Winkler Boundedness vs. blow-up in a chemotaxis system, J. Differ. Equ., Volume 215 (2005), pp. 52-107

[10] W. Jäger; S. Luckhaus On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., Volume 329 (1992), pp. 819-824

[11] E.F. Keller; L.A. Segel Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., Volume 26 (1970), pp. 399-415

[12] M. Mimura; T. Tsujikawa Aggregating pattern dynamics in a chemotaxis model including growth, Physica, A, Volume 230 (1996), pp. 499-543

[13] C. Mu; L. Wang; P. Zheng; Q. Zhang Global existence and boundedness of classical solutions to a parabolic–parabolic chemotaxis system, Nonlinear Anal., Real World Appl., Volume 14 (2013), pp. 1634-1642

[14] T. Nagai Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl., Volume 5 (1995), pp. 581-601

[15] T. Nagai Blow-up of nonradial solutions to parabolic–elliptic systems modelling chemotaxis in two-dimensional domains, J. Inequal. Appl., Volume 6 (2001), pp. 37-55

[16] T. Nagai; T. Senba; K. Yoshida Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis, Funkc. Ekvacioj, Volume 40 (1997), pp. 411-433

[17] E. Nakaguchi; K. Osaki Global existence of solutions to a parabolic–parabolic system for chemotaxis with weak degradation, Nonlinear Anal. TMA, Volume 74 (2011), pp. 286-297

[18] K. Osaki; T. Tsujikawa; A. Yagi; M. Mimura Exponential attractor for a chemotaxis–growth system of equations, Nonlinear Anal. TMA, Volume 51 (2002), pp. 119-144

[19] K. Osaki; A. Yagi Finite dimensional attractors for one-dimensional Keller–Segel equations, Funkc. Ekvacioj, Volume 44 (2001), pp. 441-469

[20] T. Senba; T. Suzuki Parabolic system of chemotaxis: Blow-up in a finite and the infinite time, Methods Appl. Anal., Volume 8 (2001), pp. 349-367

[21] Y. Tao Boundedness in a chemotaxis model with oxygen consumption by bacteria, J. Math. Anal. Appl., Volume 381 (2011), pp. 521-529

[22] Y. Tao; M. Winkler Boundedness in a quasilinear parabolic–parabolic Keller–Segel system with subcritical sensitivity, J. Differ. Equ., Volume 252 (2012), pp. 692-715

[23] Y. Tao; M. Winkler Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant, J. Differ. Equ., Volume 252 (2012), pp. 2520-2543

[24] J.I. Tello; M. Winkler A chemotaxis system with logistic source, Commun. Partial Differ. Equ., Volume 32 (2007), pp. 849-877

[25] M. Winkler Boundedness in the higher-dimensional parabolic–parabolic chemotaxis system with logistic source, Commun. Partial Differ. Equ., Volume 35 (2010), pp. 1516-1537

[26] M. Winkler Absence of collapse in a parabolic chemotaxis system with signal-dependent sensitivity, Math. Nachr., Volume 283 (2010), pp. 1664-1673

[27] M. Winkler Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model, J. Differ. Equ., Volume 248 (2010), pp. 2889-2905

[28] M. Winkler Does a ‘volume-filling effect’ always prevent chemotactic collapse?, Math. Methods Appl. Sci., Volume 33 (2010), pp. 12-24

[29] M. Winkler Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system, J. Math. Pures Appl. (2013) (in press) | DOI

[30] A. Yagi Norm behavior of solutions to a parabolic system of chemotaxis, Math. Jpn., Volume 45 (1997), pp. 241-265

  • Dan Li; Zhongping Li Asymptotic behavior of a quasilinear parabolic-elliptic-elliptic chemotaxis system with logistic source, ZAMP. Zeitschrift für angewandte Mathematik und Physik, Volume 73 (2022) no. 1, p. 17 (Id/No 22) | DOI:10.1007/s00033-021-01655-y | Zbl:1480.35042
  • Ya Tian; Dan Li; Chunlai Mu Stabilization in three-dimensional chemotaxis-growth model with indirect attractant production, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 357 (2019) no. 6, pp. 513-519 | DOI:10.1016/j.crma.2019.05.010 | Zbl:1418.35219
  • Dan Li; Chunlai Mu; Hong Yi Global boundedness in a three-dimensional chemotaxis-haptotaxis model, Computers Mathematics with Applications, Volume 77 (2019) no. 9, pp. 2447-2462 | DOI:10.1016/j.camwa.2018.12.030 | Zbl:1442.92015
  • Dan Li; Chunlai Mu; Pan Zheng; Ke Lin Boundedness in a three-dimensional Keller-Segel-Stokes system involving tensor-valued sensitivity with saturation, Discrete and Continuous Dynamical Systems. Series B, Volume 24 (2019) no. 2, pp. 831-849 | DOI:10.3934/dcdsb.2018209 | Zbl:1404.35228
  • Etsushi Nakaguchi; Koichi Osaki Global existence of solutions to an n-dimensional parabolic-parabolic system for chemotaxis with logistic-type growth and superlinear production, Osaka Journal of Mathematics, Volume 55 (2018) no. 1, pp. 51-70 | Zbl:1391.35189
  • Pan Zheng; Chunlai Mu Global boundedness in a two-competing-species chemotaxis system with two chemicals, Acta Applicandae Mathematicae, Volume 148 (2017) no. 1, pp. 157-177 | DOI:10.1007/s10440-016-0083-0 | Zbl:1360.92022
  • Dan Li; Chunlai Mu; Ke Lin; Liangchen Wang Large time behavior of solution to an attraction-repulsion chemotaxis system with logistic source in three dimensions, Journal of Mathematical Analysis and Applications, Volume 448 (2017) no. 2, pp. 914-936 | DOI:10.1016/j.jmaa.2016.11.036 | Zbl:1366.35071
  • Pan Zheng; Chunlai Mu; Xuegang Hu Persistence property in a two-species chemotaxis system with two signals, Journal of Mathematical Physics, Volume 58 (2017) no. 11, p. 111501 | DOI:10.1063/1.5010681 | Zbl:1383.92021
  • Pan Zheng; Chunlai Mu; Yongsheng Mi Global existence and decay for a chemotaxis-growth system with generalized volume-filling effect and sublinear secretion, NoDEA. Nonlinear Differential Equations and Applications, Volume 24 (2017) no. 2, p. 18 (Id/No 13) | DOI:10.1007/s00030-017-0438-x | Zbl:1373.35167
  • Dan Li; Chunlai Mu; Ke Lin; Liangchen Wang Convergence rate estimates of a two-species chemotaxis system with two indirect signal production and logistic source in three dimensions, ZAMP. Zeitschrift für angewandte Mathematik und Physik, Volume 68 (2017) no. 3, p. 25 (Id/No 56) | DOI:10.1007/s00033-017-0800-1 | Zbl:1432.35118
  • Yilong Wang A quasilinear attraction-repulsion chemotaxis system of parabolic-elliptic type with logistic source, Journal of Mathematical Analysis and Applications, Volume 441 (2016) no. 1, pp. 259-292 | DOI:10.1016/j.jmaa.2016.03.061 | Zbl:1338.35057
  • Yan Li; Johannes Lankeit Boundedness in a chemotaxis–haptotaxis model with nonlinear diffusion, Nonlinearity, Volume 29 (2016) no. 5, p. 1564 | DOI:10.1088/0951-7715/29/5/1564
  • Pan Zheng; Chunlai Mu; Xuegang Hu Boundedness and blow-up for a chemotaxis system with generalized volume-filling effect and logistic source, Discrete Continuous Dynamical Systems - A, Volume 35 (2015) no. 5, p. 2299 | DOI:10.3934/dcds.2015.35.2299
  • Xie Li; Zhaoyin Xiang Boundedness in quasilinear Keller-Segel equations with nonlinear sensitivity and logistic source, Discrete and Continuous Dynamical Systems, Volume 35 (2015) no. 8, pp. 3503-3531 | DOI:10.3934/dcds.2015.35.3503 | Zbl:1327.35151
  • Christian Stinner; Christina Surulescu; Gülnihal Meral A multiscale model for pH-tactic invasion with time-varying carrying capacities, IMA Journal of Applied Mathematics, Volume 80 (2015) no. 5, p. 1300 | DOI:10.1093/imamat/hxu055
  • Tian Xiang Boundedness and global existence in the higher-dimensional parabolic – parabolic chemotaxis system with/without growth source, Journal of Differential Equations, Volume 258 (2015) no. 12, pp. 4275-4323 | DOI:10.1016/j.jde.2015.01.032 | Zbl:1323.35072
  • Johannes Lankeit Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source, Journal of Differential Equations, Volume 258 (2015) no. 4, pp. 1158-1191 | DOI:10.1016/j.jde.2014.10.016 | Zbl:1319.35085
  • Pan Zheng; Chunlai Mu; Xuegang Hu; Ya Tian Boundedness of solutions in a chemotaxis system with nonlinear sensitivity and logistic source, Journal of Mathematical Analysis and Applications, Volume 424 (2015) no. 1, pp. 509-522 | DOI:10.1016/j.jmaa.2014.11.031 | Zbl:1307.35069
  • Liangchen Wang; Chunlai Mu; Pan Zheng On a quasilinear parabolic-elliptic chemotaxis system with logistic source, Journal of Differential Equations, Volume 256 (2014) no. 5, pp. 1847-1872 | DOI:10.1016/j.jde.2013.12.007 | Zbl:1301.35060

Cité par 19 documents. Sources : Crossref, zbMATH

Commentaires - Politique