Comptes Rendus
Ordinary differential equations/Dynamical systems
Canard-cycle transition at a fast–fast passage through a jump point
[Transition de cycles canard pour un passage rapide–rapide par un point de saut]
Comptes Rendus. Mathématique, Volume 352 (2014) no. 1, pp. 27-30.

On considère des cycles canard transitoires comportant un mécanisme de cassure générique, de type Hopf ou bien de saut, en combinaison avec un passage de type rapide–rapide par un point de saut. De tels cycles séparent deux types de cycles canard de formes différentes. On obtient des bornes supérieures sur le nombre dʼorbites périodiques qui peuvent apparaître près du cycle canard, sous certaines conditions très générales.

We consider transitory canard cycles that consist of a generic breaking mechanism, i.e. a Hopf or a jump breaking mechanism, in combination with a fast–fast passage through a jump point. Such cycle separates two types of canard cycles with a different shape. We obtain upper bounds on the number of periodic orbits that can appear near the canard cycle, and this under very general conditions.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2013.09.002

Peter De Maesschalck 1 ; Freddy Dumortier 1 ; Robert Roussarie 2

1 Hasselt University, Martelarenlaan 42, B-3500 Hasselt, Belgium
2 Institut de mathématique de Bourgogne, UMR 5584 du CNRS, université de Bourgogne, BP 47 870, 21078 Dijon cedex, France
@article{CRMATH_2014__352_1_27_0,
     author = {Peter De Maesschalck and Freddy Dumortier and Robert Roussarie},
     title = {Canard-cycle transition at a fast{\textendash}fast passage through a jump point},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {27--30},
     publisher = {Elsevier},
     volume = {352},
     number = {1},
     year = {2014},
     doi = {10.1016/j.crma.2013.09.002},
     language = {en},
}
TY  - JOUR
AU  - Peter De Maesschalck
AU  - Freddy Dumortier
AU  - Robert Roussarie
TI  - Canard-cycle transition at a fast–fast passage through a jump point
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 27
EP  - 30
VL  - 352
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crma.2013.09.002
LA  - en
ID  - CRMATH_2014__352_1_27_0
ER  - 
%0 Journal Article
%A Peter De Maesschalck
%A Freddy Dumortier
%A Robert Roussarie
%T Canard-cycle transition at a fast–fast passage through a jump point
%J Comptes Rendus. Mathématique
%D 2014
%P 27-30
%V 352
%N 1
%I Elsevier
%R 10.1016/j.crma.2013.09.002
%G en
%F CRMATH_2014__352_1_27_0
Peter De Maesschalck; Freddy Dumortier; Robert Roussarie. Canard-cycle transition at a fast–fast passage through a jump point. Comptes Rendus. Mathématique, Volume 352 (2014) no. 1, pp. 27-30. doi : 10.1016/j.crma.2013.09.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.09.002/

[1] P. De Maesschalck, F. Dumortier, R. Roussarie, Canard cycle transition at a slow–fast passage through a jump point, submitted for publication.

[2] P. De Maesschalck, F. Dumortier, R. Roussarie, Canard cycles from birth to transition, in preparation.

[3] P. De Maesschalck; F. Dumortier; R. Roussarie Cyclicity of common slow–fast cycles, Indag. Math. (N. S.), Volume 22 (2011) no. 3–4, pp. 165-206

[4] F. Dumortier Slow divergence integral and balanced canard solutions, Qual. Theory Dyn. Syst., Volume 10 (2011) no. 1, pp. 65-85

[5] F. Dumortier; R. Roussarie Multiple canard cycles in generalized Liénard equations, J. Differential Equations, Volume 174 (2001) no. 1, pp. 1-29

[6] F. Dumortier; R. Roussarie Birth of canard cycles, Discrete Contin. Dyn. Syst. Ser. S, Volume 2 (2009) no. 4, pp. 723-781

[7] M. Krupa; P. Szmolyan Relaxation oscillation and canard explosion, J. Differential Equations, Volume 174 (2001) no. 2, pp. 312-368

Cité par Sources :

Commentaires - Politique