Comptes Rendus
Complex analysis
Two results on φ-normal functions
Comptes Rendus. Mathématique, Volume 352 (2014) no. 1, pp. 21-25.

In this paper, we obtain two results on φ-normal functions, which extend some related results due to Lappan, and Aulaskari–Rättyä.

Dans cette note, nous obtenons deux résultats sur les fonctions φ-normales, qui étendent des résultats connexes dus à Lappan et Aulaskari–Rättyä.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2013.11.010

Yan Xu 1; Huiling Qiu 2

1 Institute of Mathematics, School of Mathematics, Nanjing Normal University, Nanjing 210023, PR China
2 College of Mathematics and Statistics, Nanjing Audit University, Nanjing 210029, PR China
@article{CRMATH_2014__352_1_21_0,
     author = {Yan Xu and Huiling Qiu},
     title = {Two results on \protect\emph{\ensuremath{\varphi}}-normal functions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {21--25},
     publisher = {Elsevier},
     volume = {352},
     number = {1},
     year = {2014},
     doi = {10.1016/j.crma.2013.11.010},
     language = {en},
}
TY  - JOUR
AU  - Yan Xu
AU  - Huiling Qiu
TI  - Two results on φ-normal functions
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 21
EP  - 25
VL  - 352
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crma.2013.11.010
LA  - en
ID  - CRMATH_2014__352_1_21_0
ER  - 
%0 Journal Article
%A Yan Xu
%A Huiling Qiu
%T Two results on φ-normal functions
%J Comptes Rendus. Mathématique
%D 2014
%P 21-25
%V 352
%N 1
%I Elsevier
%R 10.1016/j.crma.2013.11.010
%G en
%F CRMATH_2014__352_1_21_0
Yan Xu; Huiling Qiu. Two results on φ-normal functions. Comptes Rendus. Mathématique, Volume 352 (2014) no. 1, pp. 21-25. doi : 10.1016/j.crma.2013.11.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.11.010/

[1] R. Aulaskari; S. Makhmutov; J. Rättyä Results on meromorphic φ-normal functions, Complex Var. Elliptic Equ., Volume 54 (2009) no. 9, pp. 855-863

[2] R. Aulaskari; J. Rättyä Properties of meromorphic φ-normal functions, Michigan Math. J., Volume 60 (2011), pp. 93-111

[3] W.K. Hayman Meromorphic Functions, Clarendon Press, Oxford, 1964

[4] P. Lappan A criterion for a meromorphic function to be normal, Comment. Math. Helv., Volume 49 (1974), pp. 492-495

[5] P. Lappan The spherical derivative and normal function, Ann. Acad. Sci. Fenn. Math., Volume 3 (1977), pp. 301-310

[6] O. Lehto; K.I. Virtanen Boundary behaviour and normal meromorphic functions, Acta Math., Volume 97 (1957), pp. 47-65

[7] A.J. Lohwater; Ch. Pommerenke On normal meromorphic functions, Ann. Acad. Sci. Fenn. Math., Volume 550 (1973), pp. 1-12

[8] L. Yang Value Distribution Theory, Springer-Verlag & Science Press, Berlin, 1993

Cited by Sources:

The first author is supported by NNSF of China (Grant No. 11171045) and Doctoral Fund of Ministry of Education of China (Grant No. 20123207110003).

Comments - Policy